∫∫√(1-x²-y²/1+x²+y²)dxdy 积分域是原点圆心半径1的圆的第
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:29:57
∫∫√(1-x²-y²/1+x²+y²)dxdy 积分域是原点圆心半径1的圆的第一象限部分
化为极坐标后计算不会了
答案好像是π/8(π-2) 方法多多益善哦
化为极坐标后计算不会了
答案好像是π/8(π-2) 方法多多益善哦
先化为极坐标
原式=∫(0,π/2)dθ∫(0,1) r√((1-r^2)/(1+r^2))dr
=π/2 * (1/2) ∫(0,1)√((1-r^2)/(1+r^2))dr^2
令t=r^2,则原式
=(π/4)∫(0,1)√((1-t)/(1+t))dt
因为分子分母都有根号,一般把分子有理化,把分母变成根号下二次
=(π/4)∫(0,1) (1-t)/√(1-t^2))dt
=(π/4)∫(0,1) d(arcsint + √(1-t^2))
=(π/4)(π/2 + 0 - 0 - 1)
=(π/8)(π-2)
原式=∫(0,π/2)dθ∫(0,1) r√((1-r^2)/(1+r^2))dr
=π/2 * (1/2) ∫(0,1)√((1-r^2)/(1+r^2))dr^2
令t=r^2,则原式
=(π/4)∫(0,1)√((1-t)/(1+t))dt
因为分子分母都有根号,一般把分子有理化,把分母变成根号下二次
=(π/4)∫(0,1) (1-t)/√(1-t^2))dt
=(π/4)∫(0,1) d(arcsint + √(1-t^2))
=(π/4)(π/2 + 0 - 0 - 1)
=(π/8)(π-2)
求二重积分∫∫1 / √(1+x²+y²)dxdy,其中积分区域D={(x,y)|x²+y
∫∫(X+Y)³dxdy,积分区域D是由X=√(1+y²)与X+√2*y=0和X-√2*y=0围成
设积分域D是以原点为中心,半径为r的圆域,求lim1/πr^2∫∫e^(x^2+y^2)cos(x+y)dxdy
设xoy面上的曲线L为圆心在原点 半径为R的圆周 则闭合曲线积分L(x²+y²)ds?
∫∫e^(x+y)dxdy,积分区域为x=0,y=0,x+y=1所围成的区域
证明:以原点为圆心,半径为1的圆的方程是x^2+y^2=1
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
高数 重积分的换元法 ∫∫(D)cos[(x-y)/(x+y)]dxdy 其中D是由x+y=1,x=0,y=0所围成的区
计算二重积分∫∫D arctan﹙y/x﹚dxdy,D是1≤x²﹢y²≤4,y≥0,y≤x围成的区域
∫∫D|1-x²-y²|dxdy,其中D={(x,y)|x²+y²≤x,y≥0}
计算二重积分 ∫∫x(1+yf(x^2+y^2))dxdy,积分区间是由y=x^3,y=1,x=-1围成
求二重积分∫∫[(x+y)ln(1+y/x)]/[根号下(1-x-y)] dxdy 积分区域是x