数列{an}的前n项和为Sn,若a1=2且Sn=Sn-1+2n(n≥2,n∈N*).
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:32:57
数列{an}的前n项和为Sn,若a1=2且Sn=Sn-1+2n(n≥2,n∈N*).
(Ⅰ)求Sn;
(Ⅱ)是否存在等比数列{bn}满足b1=a1,b2=a3,b3=a9?若存在,则求出数列{bn}的通项公式;若不存在,则说明理由.
(Ⅰ)求Sn;
(Ⅱ)是否存在等比数列{bn}满足b1=a1,b2=a3,b3=a9?若存在,则求出数列{bn}的通项公式;若不存在,则说明理由.
(I)因为Sn=Sn-1+2n,
所以有Sn-Sn-1=2n对n≥2,n∈N*成立(2分)
即an=2n对n≥2成立,又a1=S1=2•1,
所以an=2n对n∈N*成立(3分)
所以an+1-an=2对n∈N*成立,所以{an}是等差数列,(4分)
所以有Sn=
a1+an
2•n=n2+n,n∈N*(6分)
(II)存在.(7分)
由(I),an=2n,n∈N*对成立
所以有a3=6,a9=18,又a1=2,(9分)
所以由b1=a1,b2=a3,b3=a9,则
b2
b1=
b3
b2=3(11分)
所以存在以b1=2为首项,公比为3的等比数列{bn},
其通项公式为bn=2•3n-1.(13分)
所以有Sn-Sn-1=2n对n≥2,n∈N*成立(2分)
即an=2n对n≥2成立,又a1=S1=2•1,
所以an=2n对n∈N*成立(3分)
所以an+1-an=2对n∈N*成立,所以{an}是等差数列,(4分)
所以有Sn=
a1+an
2•n=n2+n,n∈N*(6分)
(II)存在.(7分)
由(I),an=2n,n∈N*对成立
所以有a3=6,a9=18,又a1=2,(9分)
所以由b1=a1,b2=a3,b3=a9,则
b2
b1=
b3
b2=3(11分)
所以存在以b1=2为首项,公比为3的等比数列{bn},
其通项公式为bn=2•3n-1.(13分)
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
已知数列{an}的首项是a1=1,前n项和为Sn,且Sn+1=2Sn+3n+1(n∈N*).
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*)
已知数列{an}的前n项和为Sn,a1=-23,Sn+1Sn=an-2(n≥2,n∈N)
已知数列{an}的首项a1=3,前n项和为Sn,且S(n+1)=3Sn+2n(n∈N)
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
已知数列{an}的前n项和为Sn,且满足a1=1,Sn-Sn-1=2SnSn-1(n≥2).
数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*)
已知数列{an}的前n项的和为Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2,n∈N*).
已知数列an的前n项和为Sn,且a1=1,an=2Sn^2/2Sn -1(n≥2,n∈N+)求数列an的通项公式
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
设数列an的前n项和为sn,且a1为1 ,Sn+1=4an+2(n∈N正)