在△ABC中,内角A、B、C的对边长分别为a、b、c且sinAcosB=1/3,sinBcosA=1/6,△ABC的外接
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:59:14
在△ABC中,内角A、B、C的对边长分别为a、b、c且sinAcosB=1/3,sinBcosA=1/6,△ABC的外接圆半径R=3.求a/b值
在△ABC中,内角A、B、C的对边长分别为a、b、c且sinAcosB=1/3,sinBcosA=1/6,△ABC的外接圆半径R=3.求a/b的值 不要复制 百度知道 已有的答案好像都不对.
在△ABC中,内角A、B、C的对边长分别为a、b、c且sinAcosB=1/3,sinBcosA=1/6,△ABC的外接圆半径R=3.求a/b的值 不要复制 百度知道 已有的答案好像都不对.
在△ABC中,内角A、B、C的对边长分别为a、b、c且sinAcosB=1/3,sinBcosA=1/6,△ABC的外接圆半径R=3.求a/b的值
sinAcosB+cosAsinB=sin(A+B)=1/3+1/6=1/2,故A+B=π/6或π-π/6=5π/6
sinAcosB-cosAsinB=sin(A-B)=1/3-1/6=1/6,故A-B=arcsin(1/6)或π-arcsin(1/6)
因此可能有四种组合:
(一)A+B=π/6.(1);A-B=arcsin(1/6).(2)
(1)+(2)得2A=π/6+arcsin(1/6),故A=π/12+(1/2)arcsin(1/6);
(1)-(2)得2B=π/6-arcsin(1/6),故B=π/12-(1/2)arcsin(1/6);
∴a/b=sinA/sinB=sin[π/12+(1/2)arcsin(1/6)]/sin[π/12-(1/2)arcsin(1/6)]
=sin(15°+4.7970°)/sin(15°-4.7970°)=sin19.7970°/sin10.2030°=0.3387/0.1771=1.9125
(二)A+B=π/6.(1);A-B=π-arcsin(1/6).(2)
(1)+(2)得2A=7π/6-arcsin(1/6),故A=π/12-(1/2)arcsin(1/6);
(1)-(2)得2B=-5π/6+arcsin(1/6),故B=-5π/12+(1/2)arcsin(1/6);
B为负角,舍去此情况.
(三)A+B=5π/6.(1);A-B=arcsin(1/6).(2)
(1)+(2)得2A=5π/6+arcsin(1/6),故A=5π/12+(1/2)arcsin(1/6)
(1)-(2)得2B=5π/6-arcsin(1/6),故B=5π/12-(1/2)arcsin(1/6)
这时a/b=sin[5π/12+(1/2)arcsin(1/6)]/sin[5π/12-(1/2)arcsin(1/6)]
=sin(150°+4.7970°)/sin(150°-4.7970°)=sin154.7970°/sin145.203°=0.4258/0.5707=0.7461
(四)A+B=5π/6.(1);A-B=π-arcsin(1/6).(2)
(1)+(2)得2A=11π/6-arcsin(1/6),故A=11π/12-(1/2)arcsin(1/6);
(1)-(2)得2B=-π/6+arxsin(1/6),故B=-π/12+(1/2)arcsin(1/6)
sinAcosB+cosAsinB=sin(A+B)=1/3+1/6=1/2,故A+B=π/6或π-π/6=5π/6
sinAcosB-cosAsinB=sin(A-B)=1/3-1/6=1/6,故A-B=arcsin(1/6)或π-arcsin(1/6)
因此可能有四种组合:
(一)A+B=π/6.(1);A-B=arcsin(1/6).(2)
(1)+(2)得2A=π/6+arcsin(1/6),故A=π/12+(1/2)arcsin(1/6);
(1)-(2)得2B=π/6-arcsin(1/6),故B=π/12-(1/2)arcsin(1/6);
∴a/b=sinA/sinB=sin[π/12+(1/2)arcsin(1/6)]/sin[π/12-(1/2)arcsin(1/6)]
=sin(15°+4.7970°)/sin(15°-4.7970°)=sin19.7970°/sin10.2030°=0.3387/0.1771=1.9125
(二)A+B=π/6.(1);A-B=π-arcsin(1/6).(2)
(1)+(2)得2A=7π/6-arcsin(1/6),故A=π/12-(1/2)arcsin(1/6);
(1)-(2)得2B=-5π/6+arcsin(1/6),故B=-5π/12+(1/2)arcsin(1/6);
B为负角,舍去此情况.
(三)A+B=5π/6.(1);A-B=arcsin(1/6).(2)
(1)+(2)得2A=5π/6+arcsin(1/6),故A=5π/12+(1/2)arcsin(1/6)
(1)-(2)得2B=5π/6-arcsin(1/6),故B=5π/12-(1/2)arcsin(1/6)
这时a/b=sin[5π/12+(1/2)arcsin(1/6)]/sin[5π/12-(1/2)arcsin(1/6)]
=sin(150°+4.7970°)/sin(150°-4.7970°)=sin154.7970°/sin145.203°=0.4258/0.5707=0.7461
(四)A+B=5π/6.(1);A-B=π-arcsin(1/6).(2)
(1)+(2)得2A=11π/6-arcsin(1/6),故A=11π/12-(1/2)arcsin(1/6);
(1)-(2)得2B=-π/6+arxsin(1/6),故B=-π/12+(1/2)arcsin(1/6)
在三角形ABC中内角A,B,C所对的边为a,bc,sinAcosB+sinBcosA=-sin2C.一,求角C的大小.二
在△ABC中,内角ABC对边是abc,已知a-b=3c,且sinAcosB=2cosAsinB,求边c的值?
三角函数.在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2-c2=2b,且 sinAcosC=3cosAs
在三角形ABC中,内角A,B,C的对边分别为a,b,c,已知a^2-b^2=2b,且sinAcosB=3cosAsinB
(2014•南宁二模)设△ABC的内角A、B、C的对边分别为a、b、c,若tanC=sinA+sinBcosA+cosB
设△ABC的内角A,B,C的对边长分别为a,b,c且c=2b,2sinAsinC=1,则B=
在三角形ABC中,内角A、B、C的对边长分别为a、b、c,已知a^2-c^2=b,且sinAcosC=3cosAsinC
在△ABC中,a、b、c分别为内角A、B、C的对边,且ca+b+ba+c=1,
在△ABC中,A,B,C所对的边分别为a,b,c.已知m向量=(sinC,sinBcosA),n向量=(b,2c),且m
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4.
在△ABC中,三个内角A,B,C满足sinAcosB--sinB=sinC-sinAcosC,若△ABC的面积为6cm2
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2a+c)sinB+(2c+b)sinC.