作业帮 > 数学 > 作业

在△ABC中,a.b.c分别是角A.B.C所对的边,且 2Sin²(A+B)/2+cos2C=1,若a&sup

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 06:55:41
在△ABC中,a.b.c分别是角A.B.C所对的边,且 2Sin²(A+B)/2+cos2C=1,若a²=b²+1/2c²
求sin(A-B)
在△ABC中,a.b.c分别是角A.B.C所对的边,且 2Sin²(A+B)/2+cos2C=1,若a&sup
2Sin²(A+B)/2+cos2C=2sin²[(180-C)/2]+cos2C
=2cos²(C/2)+cos2C
=cosC+1+cos2C
=cosC+2cos²C
=1
(2cosC-1)(cosC+1)=0解得C=60°
由余弦定理:a²=b²+c² -2bccosA
b²=a²+c² -2accosB
将a²=b²+1/2c²分别代入上面两式,得
cosA=c/(4b),cosB=3c/(4a)
由正弦定理:a/sinA=b/sinB=c/sinC
将C=60°代入上式,得
sinA=√3a/(2c),sinB=√3b/(2c)
则sin(A-B)=sinAcosB-cosAsinB
=[√3a/(2c)]*[3c/(4a)]-[c/(4b)][√3b/(2c)]
=3√3/8-√3/8
=√3/4