p为椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)上一点,A、B为圆O:x^2+y^2=b^2上的两个不同的点
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:52:58
p为椭圆C:y^2/a^2+x^2/b^2=1(a>b>0)上一点,A、B为圆O:x^2+y^2=b^2上的两个不同的点,直线AB分别交x轴y轴于M、N两点且向量PA*OA=O,向量PB*OB=O,O为坐标原点.1)若椭圆的准线为+ - 25/3,并且a^2/|OM|^2+b^2/|ON|^2=25/16,求椭圆C的方程.2)椭圆C上是否存在满足向量PA*PB=0的点?若存在,求出存在时a、b满足的条件,若不存在,请说明理由.
(1)由准线公式:x=±(a^2/c)可求出a=5,c=3,所以b=4,所以椭圆方程为:y^2/25+x^2/16=1
(2)设存在P(x0,y0)满足条件,则当且仅当OBPA为正方形时成立(向量相乘为0,表示两个向量互相垂直)
所以ABS(OP)=SQR(2)×b 即:x0^2+y0^2=2b^2……式1
又因为y0^2/a^2+x0^2/b^2=1……式2(a大于b大于0)
解1、2式得x^2=(b^2(a^2-2b^2))/(a^2-b^2)
y^2=(a^2×b^2)/(a^2-b^2)
所以:当a^2-2b^2大于0 即a>SQR(2)×b> 0时,存在P点满足向量PA*PB=0
当0
(2)设存在P(x0,y0)满足条件,则当且仅当OBPA为正方形时成立(向量相乘为0,表示两个向量互相垂直)
所以ABS(OP)=SQR(2)×b 即:x0^2+y0^2=2b^2……式1
又因为y0^2/a^2+x0^2/b^2=1……式2(a大于b大于0)
解1、2式得x^2=(b^2(a^2-2b^2))/(a^2-b^2)
y^2=(a^2×b^2)/(a^2-b^2)
所以:当a^2-2b^2大于0 即a>SQR(2)×b> 0时,存在P点满足向量PA*PB=0
当0
已知椭圆C的方程为x^2/a^2+y^2/b^2=1(a>b>0)和圆x^2+y^2=b^2,过椭圆上一点P引圆O的两条
高数椭圆问题已知F1,F2时椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个点.P为椭圆C上一点.且向量P
已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左脚点为F,左、右顶点分别为A、C,上顶点为B,O为原点,P为
椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点p使角OPA=90',O为坐标圆点,A为右顶点,求证:a大于
椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点p使角OPA=90',O为坐标圆点,A为右顶点,求离心率的范
已知椭圆C的方程为x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,
过椭圆x^2+y^2=1(a>b>0)上的动点P到圆O:x^2+y^2=b^2的两条切线为PA、PB,切点分别为A、B
椭圆x^2+y^2=1(a大于b大于0)和圆:x^2+y^2=b^2,过圆上一点P引圆O的两条切线,切点分别为A,B..
过椭圆C:x^2/8+y^2/4=1上的一点P(a,b)向圆O:x^2+y^2=4引两条切线PA、PB,A、B为切点,直
已知椭圆C的方程为x^2/4+y^2/3=1,P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=根号2/2,点A是椭圆上的一点,且点A到椭圆c的