设数列{bn}满足b1=3,bn=3^nPn,且P(n+1)=Pn+n/3^(n+1) 求数列{bn}的通项公式
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:40:13
设数列{bn}满足b1=3,bn=3^nPn,且P(n+1)=Pn+n/3^(n+1) 求数列{bn}的通项公式
我就提提思路,要是全打出来太费劲了
先求Pn
仿写P(n+1)=Pn+n/3^(n+1)
Pn=Pn-1+n-1/3^n
.
P3=P2+(3-1)/3^3
P2=P1+(2-1)/3^ 到此为止
全相加,消去不少最后得P(n+1)=P1+{数列(n-1)/3^n的第二项到第n+1项和}
然后求数列(n-1)/3^n的第二项到第n-1项和
设数列(n-1)/3^n的前n+1项和为Tn+1=0/3+1/3^2+2/3^3+3/3^4+.+n/3^(n+1)
×1/3 1/3Tn+1=0/3^2+1/3^3+2/3^4+.+n/3^(n-2)
错位相减 2/3Tn+1=您自己减减看
再求出Tn+1,因为T1=0所以结果
就是数列(n-1)/3^n的第二项到第n-1项和
然后Pn就出来了,Bn也跟着出来了
要看看b1是否符合通式,不符要分写
不明白可以提意见
先求Pn
仿写P(n+1)=Pn+n/3^(n+1)
Pn=Pn-1+n-1/3^n
.
P3=P2+(3-1)/3^3
P2=P1+(2-1)/3^ 到此为止
全相加,消去不少最后得P(n+1)=P1+{数列(n-1)/3^n的第二项到第n+1项和}
然后求数列(n-1)/3^n的第二项到第n-1项和
设数列(n-1)/3^n的前n+1项和为Tn+1=0/3+1/3^2+2/3^3+3/3^4+.+n/3^(n+1)
×1/3 1/3Tn+1=0/3^2+1/3^3+2/3^4+.+n/3^(n-2)
错位相减 2/3Tn+1=您自己减减看
再求出Tn+1,因为T1=0所以结果
就是数列(n-1)/3^n的第二项到第n-1项和
然后Pn就出来了,Bn也跟着出来了
要看看b1是否符合通式,不符要分写
不明白可以提意见
若数列bn满足b1=2,且bn+1=bn+2^n+n,求数列bn的通项公式.
已知数列{bn}中,b1=1b(n+1)=3bn/3+bn 求数列{bn}的通项公式
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
数列按满足a1=1 a(n+1)=2^n-3an,设bn=an/2^n,求数列bn的递推公式 bn的通项公式an的通项公
数列{bn}满足b1=1,且b(n+1)=bn+(1/2)^n-2,(n∈N﹢),求数列{bn}的通项公式
已知无穷数{bn}满足b1=1,bn+1-bn=(1/2)^n (n>=1),数列{bn}的通项公式是?
已知数列{bn},满足b1=2,b(n+1)=2bn,(1)求数列{bn}的通项公式(2)是否存在自然数m使
3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn
已知数列an的通项公式为an=3^n-1,在等差数列bn中,bn>0(n属于n*),且b1+b2+b3=15
数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N* 求数列{bn}的通项公式
已知数列{xn}满足x1=2,x(n+1)=xn^3;设bn=lgxn,求数列{bn}的通项公式
已知正项数列bn的前n项和满足:6Sn=bn^2+3bn+2,且b1<2 求bn通项公式 第一问做出来了设数列an满足: