讨论lnx=ax (a>0)有几个实根
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 15:29:10
讨论lnx=ax (a>0)有几个实根
rt
rt
构造函数
f(x) = lnx - ax
f'(x) = 1/x - a
令 f'(x)=0,得到x=1/a
所以 x=1/a 为 f(x) 的一个极值点
且 f‘(x)=0 只有一个根,所以 f(x) 只有一个极值点
显然
当 x < 1/a 时 f'(x) > 0
当 x > 1/a 时 f'(x) < 0
即 f(x) 在 (0,1/a) 上单调增
f(x) 在 (1/a,+∞) 上间调减
所以 x=1/a 为 f(x) 的极大值点
函数只有一个极值点,那么极大值点就是函数的最大值点
所以f(x)的最大值为
f(1/a) = ln(1/a) - 1
显然
如果 f(1/a) <0,那么f(x) = 0就无实根,因为函数的最大值都小于0,不可能有等于0的点
如果 f(1/a) =0,那么f(x) = 0就有且仅有一个实根
如果 f(1/a) >0,那么f(x)=0就有两个实根,因为x→0时,f(x)<0,x→+∞,f(x)<0
令f(1/a)=0,得到a=1/e
即当 a>1/e 时 f(1/a)<0,f(x) = 0无实根,即原方程 lnx = ax 无实根;
即当 a=1/e 时 f(1/a)<0,f(x) = 0有且仅有一个实根,即原方程 lnx = ax 有且仅有一个实根;
即当 a<1/e 时 f(1/a)<0,f(x) = 0有两个实根,即原方程 lnx = ax 有两个实根
下图中对应了以上三种情况,直线与曲线分别没有交点,只有一个交点,有两个交点
f(x) = lnx - ax
f'(x) = 1/x - a
令 f'(x)=0,得到x=1/a
所以 x=1/a 为 f(x) 的一个极值点
且 f‘(x)=0 只有一个根,所以 f(x) 只有一个极值点
显然
当 x < 1/a 时 f'(x) > 0
当 x > 1/a 时 f'(x) < 0
即 f(x) 在 (0,1/a) 上单调增
f(x) 在 (1/a,+∞) 上间调减
所以 x=1/a 为 f(x) 的极大值点
函数只有一个极值点,那么极大值点就是函数的最大值点
所以f(x)的最大值为
f(1/a) = ln(1/a) - 1
显然
如果 f(1/a) <0,那么f(x) = 0就无实根,因为函数的最大值都小于0,不可能有等于0的点
如果 f(1/a) =0,那么f(x) = 0就有且仅有一个实根
如果 f(1/a) >0,那么f(x)=0就有两个实根,因为x→0时,f(x)<0,x→+∞,f(x)<0
令f(1/a)=0,得到a=1/e
即当 a>1/e 时 f(1/a)<0,f(x) = 0无实根,即原方程 lnx = ax 无实根;
即当 a=1/e 时 f(1/a)<0,f(x) = 0有且仅有一个实根,即原方程 lnx = ax 有且仅有一个实根;
即当 a<1/e 时 f(1/a)<0,f(x) = 0有两个实根,即原方程 lnx = ax 有两个实根
下图中对应了以上三种情况,直线与曲线分别没有交点,只有一个交点,有两个交点
高数函数实根讨论帮忙做下:计论lnx=ax(a>0)的实根分布.很好,谢谢,这是用图形在解,那如果是用函数的单调性来判断
若关于x的方程lnx-ax=0只有一个实根,则实数a=
已知函数:f(x)=lnx-ax-3(a不等于0) 讨论函数f(x)的单调性
已知函数fx=lnx-ax^2+(2-a)x 讨论函数的单调性!
急!已知函数f(x)=(a+1)lnx+ax^2+1讨论其单调性
已知函数f(x)=(a+1)lnx+ax^2+1 讨论函数的单调性
讨论函数f(x)=ax-1-lnx(a属于R)的单调性
1.方程lnx-x=0的根的个数______________ 2.方程lnx-x=a有两个实根,则a的取值范围_____
已知函数f(x)=(2-a)lnx+x/1+2ax当a=0时,讨论f(x)的单调性
已知函数f(x)=(a+1)lnx+ax^2+1 描述:(1)讨论f(x)的单调性.
已知函数f(x)=0.5x^2-ax+(a-1)lnx 讨论函数f(x)的单调性
已知函数f(X)=ax^2+2lnx,(a属于R),讨论函数f(X)的单调性