∑(∞,n=1)(n^2-2n+3)/(n^4+n^2-6)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
Sn=n(n+2)(n+4)的分项等于1/6[n(n+2)(n+4)(n+5)-(n-1)n(n+2)(n+4)]吗?
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
证明:1+2C(n,1)+4C(n,2)+...+2^nC(n,n)=3^n .(n∈N+)
如果正整数n使得[n/2]+[n/3]+[n/4]+[n/5]+[n/6]=69,则n=
2^n/n*(n+1)
1 + (n + 1) + n*(n + 1) + n*n + (n + 1) + 1 = 2n^2 + 3n + 3
1\n(n+3)+1\(n+3)(n+6)+1\(n+6)(n+9)=1\2 n+18 n为正整数,求n的值
如果正整数n使得[n/2]+[n/3]+[n/4]+[n/5]+[n/6]=69,则n为( ).([ n ]表示不超过n
化简:1/(n+1)(n+2)+1/(n+2)(n+3)+1/(n+3)(n+4)
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)