微分方程2yy''=(y')^2的通解是()A.(x-C)^2;B.C1(x-1)^2+C2(x-1)^2;C.C1+(
问(x-C1)2+(y-C2)2=1是哪个微分方程的隐式通解,其中C1,C2为任意常数
验证给定函数是其对应微分方程的解:xyy"+x(y')^2-yy'=0,x^2/C1+y^2/C2=1
验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y
已知抛物线C1:y^2=4x圆C2:(x-1)^2+y^2=1,过抛物线焦点的直线l交C1于A,D两点,交C2于B.C两
验证y=C1 * e^(C2 - X) - 1是微分方程y″-9y=9的解但不是通解,C1、C2为任意常数.
已知C1:x^2+y^2=2和圆C2:直线l与圆C1切于点(-1,1);圆C2的圆心在射线2x+y=0(x≤0)上,圆C
如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(
下列微分方程是一阶线性微分方程的是() A.y'=siny.B.yy'=1.C.y'=x^2+y^2.D.ydx+(x-
有关微分方程的已知y=1,y=2,y=x*x是某二阶非齐次线性微分方程的三个解,则该方程的通解为()?y=C1(x-1)
已知抛物线C1:y=x^2 + 2x和C2:y=-x^2 + a,如果直线l同时是C1,C2切线,则称l是C1,C2的公
已知圆C1与圆C2相交于A(1,3)和B(m,1)两圆的圆心都在直线x-y+c/2=0上,设C(c,0),求A、B、C三
已知两圆C1:x²+y²-2y=0,C2:x²+(y+1)²=4的圆心分别是C1