第一题:d[(e^x-1)/x]/dx关于x的幂级数展开式为什么?答案直接写:{lim [(1/n!)*x的n次方] n
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:52:05
第一题:
d[(e^x-1)/x]/dx关于x的幂级数展开式为什么?
答案直接写:{lim [(1/n!)*x的n次方] n从1到无穷大 / x}的1撇.
请问这一步是怎么来的呢?
第2题:
设函数f(x)=PI*x+x^2,(-PI
d[(e^x-1)/x]/dx关于x的幂级数展开式为什么?
答案直接写:{lim [(1/n!)*x的n次方] n从1到无穷大 / x}的1撇.
请问这一步是怎么来的呢?
第2题:
设函数f(x)=PI*x+x^2,(-PI
请教级数问题
30 - 离问题结束还有 11 天 12 小时
第一题:
d[(e^x-1)/x]/dx关于x的幂级数展开式为什么?
答案直接写:{lim [(1/n!)*x的n次方] n从1到无穷大 / x}的1撇.
请问这一步是怎么来的呢?
e^2 = 1 + x + x^2/2 + x^3/6 + ...+ x^n/n!
e^2 - 1 = x + x^2/2 + x^3/6 + ...+ x^n/n!
(e^2 - 1)/x = 1 + x/2 + x^2/6 + ...+ x^(n - 1)/n!
D[(e^2 - 1)/x]/D[x] = (1 + x/2 + x^2/6 + ...+ x^(n - 1)/n!)'
还可以接着算:
D[(e^2 - 1)/x]/D[x] =1/2 + (2 x)/6 + ...+ ((n - 1) x^(n - 2))/n!
D[(e^2 - 1)/x]/D[x] = ∑((n - 1) x^(n - 2))/n!,n从2开始
或者
D[(e^2 - 1)/x]/D[x] = ∑(n x^(n - 1))/(n+1)!,n从1开始
第2题:
设函数f(x)=π*x+x^2,(-π
30 - 离问题结束还有 11 天 12 小时
第一题:
d[(e^x-1)/x]/dx关于x的幂级数展开式为什么?
答案直接写:{lim [(1/n!)*x的n次方] n从1到无穷大 / x}的1撇.
请问这一步是怎么来的呢?
e^2 = 1 + x + x^2/2 + x^3/6 + ...+ x^n/n!
e^2 - 1 = x + x^2/2 + x^3/6 + ...+ x^n/n!
(e^2 - 1)/x = 1 + x/2 + x^2/6 + ...+ x^(n - 1)/n!
D[(e^2 - 1)/x]/D[x] = (1 + x/2 + x^2/6 + ...+ x^(n - 1)/n!)'
还可以接着算:
D[(e^2 - 1)/x]/D[x] =1/2 + (2 x)/6 + ...+ ((n - 1) x^(n - 2))/n!
D[(e^2 - 1)/x]/D[x] = ∑((n - 1) x^(n - 2))/n!,n从2开始
或者
D[(e^2 - 1)/x]/D[x] = ∑(n x^(n - 1))/(n+1)!,n从1开始
第2题:
设函数f(x)=π*x+x^2,(-π
利用d[(cosx-1)/x]/dx的幂级数展开式求级数∑(-1)^n*[(2n-1)/2n!]*(π/2)^n之和,求
lim(n趋于无穷)∫(1 0)x的n次方dx=多少?
求两道极限计算题:1)lim(x->1):(x^n-1)/(x-1) (n属于自然数集,x^n表示x的n次方)2)lim
求幂级数的和函数 x^(n-1)/(n2^n)
求幂级数息可吗(n+1)X的n次方的收敛与和函数
幂级数求和函数求幂级数∑[(n+1)/n!]x^n的和函数
证明:(1+x)的2N次方展开式中X的N次方的系数等于(1+X)的2N-1次方展开式中X的N次方的系数的2倍.
幂级数[(-1)^n/3^n]x^n (|x|
lim (n趋向无穷)(x/1+x)x次方
幂级数∑ (x-1)的n次方/n,(幂级数∑的上面是∞,下面是n=1),求幂级数的收敛区间
幂级数∑2^n*x^n/n的阶乘的和函数为e^2x-1?为什么呀,尽快解决这个问题
(x-1/x)2n展开式的常数项是多少