作业帮 > 数学 > 作业

已知某工厂生产x件产品的成本为c=25000+200x+(x^2/40)……

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:37:27
已知某工厂生产x件产品的成本为c=25000+200x+(x^2/40)……
已知某工厂生产x件产品的成本为c=25000+200x+(x^2/40) (元),问(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
(最好用导数的知识解答……谢谢各位了.)
已知某工厂生产x件产品的成本为c=25000+200x+(x^2/40)……
解:(1)设平均成本为y元,则y=+200+(x>0).
y′=()′=.
令y′=0,得x1=1 000,x2=-1 000(舍去).
当在x=1 000附近左侧时,y′<0;当在x=1 000附近右侧时,y′>0,故当x=1 000时,y取得极小值.由于函数只有一个点使y′=0,且函数在该点有极小值,那么函数在该点取得最小值,因此要使成本最低,应生产1 000件产品.
(2)利润函数L=500x-(25 000+200x+)=300x-25 000-.
∴L′=(300x-25 000-)′=300-.
令L′=0,得x=6 000,当x在6 000附近左侧时,L′>0;
当x在6 000附近右侧时,L′<0,
故当x=6 000时,L取得最大值.
由于函数只有一个使L′=0的点,且函数在该点有极大值,那么函数在该点取得最大值.因此,要使利润最大,应生产6 000件产品.