矩阵n次幂问题a=【k 0 0;1 k 0;0 1 k】求a^n
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 09:50:58
矩阵n次幂问题
a=【k 0 0;1 k 0;0 1 k】
求a^n
a=【k 0 0;1 k 0;0 1 k】
求a^n
a^n = [0 0 0] [1 0 0]
{ [1 0 0] + k[0 1 0] }^n
[0 1 0] [0 0 1]
上式可用二项式定理展开
令左边矩阵为A,右边矩阵为I
a^n=(A+kI)^n
注意到A^2=[0 0 0] A^3为3阶0矩阵
[0 0 0]
[1 0 0]
所以a^n=C(n,2)A^2*(kI)^(n-2)+C(n,1)A*(kI)^(n-1)+(kI)^n
=C(n,2)k^(n-2)A^2+C(n-1)k^(n-1)A+k^nI
=[k^n 0 0]
[nk^(n-1) k^n 0]
[n(n-1)/2*k^(n-2) nk^(n-1) k^n]
{ [1 0 0] + k[0 1 0] }^n
[0 1 0] [0 0 1]
上式可用二项式定理展开
令左边矩阵为A,右边矩阵为I
a^n=(A+kI)^n
注意到A^2=[0 0 0] A^3为3阶0矩阵
[0 0 0]
[1 0 0]
所以a^n=C(n,2)A^2*(kI)^(n-2)+C(n,1)A*(kI)^(n-1)+(kI)^n
=C(n,2)k^(n-2)A^2+C(n-1)k^(n-1)A+k^nI
=[k^n 0 0]
[nk^(n-1) k^n 0]
[n(n-1)/2*k^(n-2) nk^(n-1) k^n]
矩阵n次幂问题a=【k 0 0;1 k 0;0 1 k】求a^n
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知a1=0 k属于N 求
当n趋近于无穷时,求k=0到n,(k•a^k)/(1+a)^(k+1)的和
证明:lim n^k/a^n=0 ,(a>1)
设A是n阶矩阵,若存在正整数k,使线性方程组A^kα=0有解向量,且A^(k-1)α≠0
行列式问题:A为n阶矩阵,k为实数,则有k/A^(-1)/=k/A/^(-1)
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n]a[n+1])^1/2 已知a1=0 k属于N 求证a
难题a(n+1)=k+(2k+1)an+(k(k+1)an(an+1)) ^1/2已知a1=0求an
证明n*(x+1)^(n-1)=Σ(k=0到n)k*c(n,k)*x^(k-1)
|(kA)^(-1)|=k^(-n)|A|^(-1) (k不等于0为任意常数)此结论正确吗为什么,AB为N阶可逆矩阵
设A是n阶矩阵,若存在正整数k,使线性方程组A^kX=0有解向量a,且A^k-1a≠0.证明:a,Aa,…,A^K-1a
设A为n阶方阵,且A的k次幂等于0矩阵,(k为正整数),则() (A)A=0 (B)A有一个不为0的特征值