(2013•甘井子区二模)如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,-3)三点,对称轴与
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:17:14
(2013•甘井子区二模)如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,-3)三点,对称轴与抛物线相交于点D、与直线BC相交于点E,连接DE.
(1)求该抛物线的解析式;
(2)平面直角坐标系中是否存在一点R,使点R、D、B所成三角形和△DEB全等?若存在,求点R的坐标;若不存在,说明理由;
(3)在抛物线上是否存在一点P,使△PEB的面积是△BDE的面积的一半?若存在,直接写出点P的坐标;若不存在,说明理由.
(1)求该抛物线的解析式;
(2)平面直角坐标系中是否存在一点R,使点R、D、B所成三角形和△DEB全等?若存在,求点R的坐标;若不存在,说明理由;
(3)在抛物线上是否存在一点P,使△PEB的面积是△BDE的面积的一半?若存在,直接写出点P的坐标;若不存在,说明理由.
(1)∵抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,-3)三点,
∴
a−b+c=0
9a+3b+c=0
c=−3,
解得
a=1
b=−2
c=−3,
∴抛物线的解析式为y=x2-2x-3;
(2)∵y=x2-2x-3=(x-1)2-4,
∴抛物线的对称轴为直线x=1,顶点D(1,-4),
易求直线BC的解析式为y=x-3,
当x=1时,y=1-3=-2,
∴点E的坐标为(1,-2),
DE=-2-(-4)=-2+4=2,
∵点R、D、B所成三角形和△DEB全等,
∴①BR1∥DE且BR1=DE时,点R1的坐标(3,-2);
②点E、R2关于BD对称时,设ER2与BD相交于F,过点F作FG⊥DE于G,
由勾股定理得,BD=
42+(3−1)2=2
5,
∴FD=DE•cos∠BDE=2×
4
2
5=
4
∴
a−b+c=0
9a+3b+c=0
c=−3,
解得
a=1
b=−2
c=−3,
∴抛物线的解析式为y=x2-2x-3;
(2)∵y=x2-2x-3=(x-1)2-4,
∴抛物线的对称轴为直线x=1,顶点D(1,-4),
易求直线BC的解析式为y=x-3,
当x=1时,y=1-3=-2,
∴点E的坐标为(1,-2),
DE=-2-(-4)=-2+4=2,
∵点R、D、B所成三角形和△DEB全等,
∴①BR1∥DE且BR1=DE时,点R1的坐标(3,-2);
②点E、R2关于BD对称时,设ER2与BD相交于F,过点F作FG⊥DE于G,
由勾股定理得,BD=
42+(3−1)2=2
5,
∴FD=DE•cos∠BDE=2×
4
2
5=
4
(2013•甘井子区二模)如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,-3)三点,对称轴与
1、如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P
(2014•温州二模)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c
如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与
已知,如图,抛物线y=ax2+bx+c经过点A(-1,0),B(0,-3),C(3,0 )三点.
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(-3,0)
如图,抛物线y=ax2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于
如图,抛物线y=ax^+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P ,与直线B
如图,已知抛物线y = ax2 + bx+c过点C(0,-3),与x轴交于A、B两点,经过A、B、C三点的圆的圆心M(1
如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线相交
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.