f(x)=sin(2x-5/6π)+2cos2x化简
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:37:27
f(x)=sin(2x-5/6π)+2cos2x化简
并求出f(x)的单调增区间
并求出f(x)的单调增区间
解析:
f(x)=sin(2x-5/6π)+2cos2x
=sin2x*cos(5/6π)- cos2x*sin(5/6π) +2cos2x
=sin2x*[-cos(π/6)] -cos2x*sin(π/6) +2cos2x
=sin2x*(-√3/2) - cos2x*(1/2) +2cos2x
=sin2x*(-√3/2) - cos2x*(3/2)
=-√3*[sin2x*(1/2) +cos2x*(√3/2)]
=-√3*sin(2x+ π/3)
则可知当π/2 + 2kπ≤2x+ π/3≤3π/2 + 2kπ即π/12 + kπ≤2x≤7π/12 + kπ,k属于Z时,正弦型函数y=sin(2x+π/3)是减函数,此时函数f(x)是增函数
所以f(x)的单调增区间是[π/12 + kπ,7π/12 + kπ],k属于Z
f(x)=sin(2x-5/6π)+2cos2x
=sin2x*cos(5/6π)- cos2x*sin(5/6π) +2cos2x
=sin2x*[-cos(π/6)] -cos2x*sin(π/6) +2cos2x
=sin2x*(-√3/2) - cos2x*(1/2) +2cos2x
=sin2x*(-√3/2) - cos2x*(3/2)
=-√3*[sin2x*(1/2) +cos2x*(√3/2)]
=-√3*sin(2x+ π/3)
则可知当π/2 + 2kπ≤2x+ π/3≤3π/2 + 2kπ即π/12 + kπ≤2x≤7π/12 + kπ,k属于Z时,正弦型函数y=sin(2x+π/3)是减函数,此时函数f(x)是增函数
所以f(x)的单调增区间是[π/12 + kπ,7π/12 + kπ],k属于Z
f(x)=sin(2x-5/6π)+2cos2x化简
已知函数f(x)=(6cos^4x+5sin^2x-4)/cos2x
函数f(x)=cos2x+cos(x+π/3)+sin(x+π/6)+3sin^2x的最小值
f(x)=((1+cos2x)^2-2cos2x-1)/(sin(π/4+x)sin(π/4-x))
已知函数f(x)=sin(π-x)sin(π2-x)+cos2x
已知函数f(x)=(6cos^4x+5sin^2x-4)/cos2x 判断f(x)的奇偶性
已知函数f(χ)=sin(2x+π/6 )+sin(2x- π/6)+cos2x+1(x∈R),
已知函数f(x)=sin(2x+π/6)-cos2x
已知函数f(x)=2cos2x+sin²x
已知f(sin-1)=cos2x+2,求f(x)
已知函数f(x)=sin(2x+π/2)+sin(2x-π/6)+cos2x+1,求f(x)的最小正周期,对称轴
已知函数 f(x)= 6cos^(4) x + 5sin^(2) x - 4) / cos2x , 求y的 定义域 及