作业帮 > 数学 > 作业

连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,设圆Q的方程为x2+y2=17.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:04:22
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,设圆Q的方程为x2+y2=17.
(1)求点P在圆Q上的概率;
(2)求点P在圆Q外部的概率.
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,设圆Q的方程为x2+y2=17.
m的值的所有可能是1,2,3,4,5,6,n的值的所有可能是1,2,3,4,5,6,
点P(m,n)的所有可能情况有6×6=36种,
(1)点P在圆Q上,即p的坐标满足x2+y2=17,其情况只有P(1,4),P(4,1)两种,
根据古典概型公式,点P在圆Q上的概率为p1=
2
36=
1
18,
(2)满足x2+y2<17的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)
共有8个,即点P在圆x2+y2=17内部的情况有8种,
由(1)可得,点P在圆Q上只有P(1,4),P(4,1)两种情况,
所以点P在圆Q外部的概率为p2=1-
2+8
36=
26
36=
13
18.