a,b∈(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13,则cos(a+pi/4)=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:25:58
a,b∈(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13,则cos(a+pi/4)=
解cos(a+π/4)
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
由a,b∈(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13
知a+b属于(3π/2,2π),b-π/4属于(π/2,3π/4)
cos(a+b)=4/5,cos(b-π/4)=5/13
故
cos(a+π/4)
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
=4/5*5/13+(-3/5)*(12/13)
=20/65-36/65
=-16/65
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
由a,b∈(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13
知a+b属于(3π/2,2π),b-π/4属于(π/2,3π/4)
cos(a+b)=4/5,cos(b-π/4)=5/13
故
cos(a+π/4)
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
=4/5*5/13+(-3/5)*(12/13)
=20/65-36/65
=-16/65
a,b∈(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13,则cos(a+pi/4)=
已知a,b,属于(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13,则cos(a+pi
是否存在a属于(-pi/2,pi/2),b属于(0,pi),使等式sin(3Pi-a)=根号2cos(pi/2)-b),
a*sin(pi/4 - x) - b*cos(pi/4 - x) = a*sin(pi/4 + x) - b*cos(
三角形ABC中sin(2Pi-A)=-根号2cos(3Pi/2+B)根号3cos(2Pi-A)=根号2sin(Pi/2+
第一题 cos(a+b)=4/5.cos(a-b)= -4/5 .a+b∈[7pi/4,2pi].a-b∈[3pi/4,
已知pi/4<a<b<pi/2,且sin(a+b)=4/5,cos(a-b)=12/13,求sina2a的值.
已知a,b属于(Pi/2,Pi),cosa+sin>0,则有() A、a+b3Pi/2 C、a+b=3pi/2 D、a+
tana=-3,则sin(pi+a)cos(pi-a)=
tana=2求sin(pi-a)cos(2pi-a)sin(-a+3pi/2)/tan(-a-pi)sin(-pi-a)
已知函数f(x)=cos(2x-pi/3)+2sin(x-pi)*sin(x+pi/4)
化简间sin(a-2pi)cos(a+pi)tan(a-99pi)cos(pi-a)sin(3pi-a)sin(-a-p