数学,证明恒等式(cos平方5π/12)+(cos平方π/12)+(cos5π/12)(cosπ/12)=5/4.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:46:15
数学,证明恒等式(cos平方5π/12)+(cos平方π/12)+(cos5π/12)(cosπ/12)=5/4.
help me!真的看不懂。
help me!真的看不懂。
解本题就是证明
cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/4
我们用分析法证明
欲证cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/4
只需证明cos^2(75°)+sin^2(90°-15°)+cos(75°)cos(15°)=5/4
故需证cos^2(75°)+sin^2(75°)+cos(75°)cos(15°)=5/4
故需证1+cos(75°)cos(15°)=5/4
即需证cos(75°)cos(15°)=5/4-1=1/4(有积化和差知)
需证明1/2[cos(75°+15°)+cos(75°-15°)]=1/4
即需证1/2[cos(90°)+cos(60°)]=1/4
即需证1/2[cos(60°)]=1/4
即须证cos(60°)=1/2成立
而cos(60°)=1/2显然成立
故cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/4成立.
cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/4
我们用分析法证明
欲证cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/4
只需证明cos^2(75°)+sin^2(90°-15°)+cos(75°)cos(15°)=5/4
故需证cos^2(75°)+sin^2(75°)+cos(75°)cos(15°)=5/4
故需证1+cos(75°)cos(15°)=5/4
即需证cos(75°)cos(15°)=5/4-1=1/4(有积化和差知)
需证明1/2[cos(75°+15°)+cos(75°-15°)]=1/4
即需证1/2[cos(90°)+cos(60°)]=1/4
即需证1/2[cos(60°)]=1/4
即须证cos(60°)=1/2成立
而cos(60°)=1/2显然成立
故cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/4成立.
数学,证明恒等式(cos平方5π/12)+(cos平方π/12)+(cos5π/12)(cosπ/12)=5/4.
帮我解,证明恒等式(cos平方5π/12)+(cos平方π/12)+(cos5π/12)(cosπ/12)=5/4
cos5/12πcosπ/12+cosπ/12sinπ/6=?
化简cos(π/12)*cos(5π/12)
计算cos(a+5π/12)cos(a+π/6)+cos(π/12-a)cos(π/3-a)
试证明:1+2sinαcosα/cos平方α-sin平方α=tan(π/4-α)
cos方5π/12+cos方π/12+cosπ/12*cos5π/12 最后等于5/4的过程.
cos方5π/12+cos方π/12+cosπ/12*cos5π/12 最后等于4/5的过程.
证明下列恒等式: (1)2sin(2/π+x)cos(2/π-x)*cosθ+(2cos^2x-1)*sinθ=sin(
计算cos平方π/12-1/2
(sin5π/12-sinπ/12)(cos5π/12+cosπ/12)=?
数学极限的运算lim α→π/2 (sinα-sin5α)/(cosα+cos5α)