如图,已知抛物线Y=X^2+BX+C与一条直线交与A(-1,0)C(2,3)两点,与Y轴交于点N 其顶点为D
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:59:48
如图,已知抛物线Y=X^2+BX+C与一条直线交与A(-1,0)C(2,3)两点,与Y轴交于点N 其顶点为D
若P是该抛物线上位于直线AC上方一动点,求三角形APC最大面积(A在X负半轴,对称轴X=1)
若P是该抛物线上位于直线AC上方一动点,求三角形APC最大面积(A在X负半轴,对称轴X=1)
问: 如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值. 分析:(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)根据两点之间线段最短作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD的值最小;(3)需要分类讨论:①当点E在线段AC上时,点F在点E上方,则F(x,x+3)和②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x-1),然后利用二次函数图象上点的坐标特征可以求得点E的坐标;(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1.设Q(x,x+1),则P(x,-x²+2x+3).根据两点间的距离公式可以求得线段PQ=-x²+x+2;最后由图示以及三角形的面积公式知S△APC=-3/2(x-1/2)²+27/8,所以由二次函数的最值的求法可知△APC的面积的最大值;方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2.设Q(x,x+1),则P(x,-x²+2x+3).根据图示以及三角形的面积公式知S△APC=S△APH+S直角梯形PHGC-S△AGC=-3/2(x-1/2)²+27/8,所以由二次函数的最值的求法可知△APC的面积的最大值; (1)由抛物线y=-x²+bx+c过点A(-1,0)及C(2,3)得,-1-b+c=0-4+2b+c=3 解得,b=2,c=3 故抛物线为y=-x²+2x+3又设直线为y=kx+n过点A(-1,0)及C(2,3)得-k+n=02k+n=3 解得,k=1,n=1 故直线AC为y=x+1;
(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=-1/5 x+21/5 ,
当M(3,m)在直线DN′上时,MN+MD的值最小,则m=-1/5 ×3+21/5=18/5 ;
(3)由(1)、(2)得D(1,4),B(1,2),∵点E在直线AC上,设E(x,x+1),①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=-x²+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x-1)由F在抛物线上∴x-1=-x²+2x+3解得x=(1-√17)/2 或x=(1+√17)/2 ∴E((1-√17)/2,﹙3-√17﹚/2)或(﹙1+√17﹚/2 ,﹙3+√17﹚/2)综上,满足条件的点E的坐标为(0,1)、(﹙1-√17﹚/2,﹙3-√17﹚/2)或((1+√17)/2, ﹙3+√17﹚/2); (4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,-x²+2x+3)∴PQ=(-x2+2x+3)-(x+1)=-x²+x+2又∵S△APC=S△APQ+S△CPQ=1/2 PQ•AG=1/2(-x²+x+2)×3=-3/2(x-1/2)²+27/8 ∴面积的最大值为27/8.
方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,设Q(x,x+1),则P(x,-x²+2x+3)又∵S△APC=S△APH+S直角梯形PHGC-S△AGC=1/2(x+1)(-x²+2x+3)+1/2(-x²+2x+3+3)(2-x)-1/2×3×3=-3/2 x²+3/2 x+3=-3/2(x-1/2)²+27/8 ∴△APC的面积的最大值为27/8. 点评:本题考查了二次函数综合题.解答(3)题时,要对点E所在的位置进行分类讨论,以防漏解. 有疑问可以追问哦.、.、
(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=-1/5 x+21/5 ,
当M(3,m)在直线DN′上时,MN+MD的值最小,则m=-1/5 ×3+21/5=18/5 ;
(3)由(1)、(2)得D(1,4),B(1,2),∵点E在直线AC上,设E(x,x+1),①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=-x²+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x-1)由F在抛物线上∴x-1=-x²+2x+3解得x=(1-√17)/2 或x=(1+√17)/2 ∴E((1-√17)/2,﹙3-√17﹚/2)或(﹙1+√17﹚/2 ,﹙3+√17﹚/2)综上,满足条件的点E的坐标为(0,1)、(﹙1-√17﹚/2,﹙3-√17﹚/2)或((1+√17)/2, ﹙3+√17﹚/2); (4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,-x²+2x+3)∴PQ=(-x2+2x+3)-(x+1)=-x²+x+2又∵S△APC=S△APQ+S△CPQ=1/2 PQ•AG=1/2(-x²+x+2)×3=-3/2(x-1/2)²+27/8 ∴面积的最大值为27/8.
方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,设Q(x,x+1),则P(x,-x²+2x+3)又∵S△APC=S△APH+S直角梯形PHGC-S△AGC=1/2(x+1)(-x²+2x+3)+1/2(-x²+2x+3+3)(2-x)-1/2×3×3=-3/2 x²+3/2 x+3=-3/2(x-1/2)²+27/8 ∴△APC的面积的最大值为27/8. 点评:本题考查了二次函数综合题.解答(3)题时,要对点E所在的位置进行分类讨论,以防漏解. 有疑问可以追问哦.、.、
如图,已知抛物线Y=X^2+BX+C与一条直线交与A(-1,0)C(2,3)两点,与Y轴交于点N 其顶点为D
如图,已知抛物线y=ax^2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6
如图,抛物线y=ax^2+bx+c与x轴交于A,D两点,与y轴交于点c,抛物线的顶点b在第一象限,若点A的坐标为(1,0
如图,已知抛物线y=ax平方+bx-2(a不等0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(
)如图,己知抛物线y=x2+bx+c的顶点坐标为(3,―1),与x轴交于A、B两点,与y轴交于点D,直线DC平行于x轴,
如图,已知抛物线y=(x-1)²与直线y=2x+1相交于A、B两点,与x轴交于点c,顶点为D(1)求抛物线与直
如图 已知抛物线y=ax²+bx+c.顶点坐标为(2,-1)且与Y轴交于点(0,3)与x轴交于A B两点
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
如图,已知抛物线y=-4/9x²+bx+c与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO
如图,已知抛物线y=1/2+bx+c与x轴交于A(-4,0)和B(1,0)两点,与y轴交于C点(3)若P为抛物线上A、C
如图,顶点为D的抛物线y=x平方+bx-3与x轴交于A 、B两点,与y轴交于点C,连结BC.已知tan∠ABC=1