一道微积分题目设f(x)=∫(0到x)e^(-y^2+2y)dy求∫(0到1)((x-1)^2)f(x)dx要过程不要只
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 16:14:24
一道微积分题目
设f(x)=∫(0到x)e^(-y^2+2y)dy
求∫(0到1)((x-1)^2)f(x)dx
要过程不要只是一个结果,
设f(x)=∫(0到x)e^(-y^2+2y)dy
求∫(0到1)((x-1)^2)f(x)dx
要过程不要只是一个结果,
∫(0/1) ((x-1)^2)f(x)dx
=(1/3)∫(0/1) f(x) d(x-1)^3
=(1/3)f(x)(x-1)^3 (0/1) -(1/3)∫(0/1)(x-1)^3df(x).
其中:
(1/3)f(x)(x-1)^3 (0/1)
=(1/3)f(1)(1-1)^3-(1/3)f(0)(x-1)^3
=0-(1/3)(x-1)^3∫(0/0)e^(-y^2+2y)dy
=0-0
=0
f(x)=∫(0/x)e^(-y^2+2y)dy
f'(x)=e^(-x^2+2x)
所以:
df(x)=e^(-x^2+2x)dx
则:
-(1/3)∫(0/1)(x-1)^3df(x).
=-(1/3)∫(0/1) (x-1)^3e^(-x^2+2x)dx
=-(e/3)∫(0/1) (x-1)^3e^[-(x-1)^2]dx
=-(e/6)∫(0/1)(x-1)^2e^[-(x-1)^2d(x-1)^2
=(e/6)∫(0/1)(x-1)^2 d e^[-(x-1)^2 应用分部积分可得到:
=(e/6)(x-1)^2e^[-(x-1)^2] (0/1)+(e/6)e^[-(x-1)^2](0/1)
=(e/6)e^[-(x-1)^2](x^2-2x+2) (0/1)
=(e-2)/6.
=(1/3)∫(0/1) f(x) d(x-1)^3
=(1/3)f(x)(x-1)^3 (0/1) -(1/3)∫(0/1)(x-1)^3df(x).
其中:
(1/3)f(x)(x-1)^3 (0/1)
=(1/3)f(1)(1-1)^3-(1/3)f(0)(x-1)^3
=0-(1/3)(x-1)^3∫(0/0)e^(-y^2+2y)dy
=0-0
=0
f(x)=∫(0/x)e^(-y^2+2y)dy
f'(x)=e^(-x^2+2x)
所以:
df(x)=e^(-x^2+2x)dx
则:
-(1/3)∫(0/1)(x-1)^3df(x).
=-(1/3)∫(0/1) (x-1)^3e^(-x^2+2x)dx
=-(e/3)∫(0/1) (x-1)^3e^[-(x-1)^2]dx
=-(e/6)∫(0/1)(x-1)^2e^[-(x-1)^2d(x-1)^2
=(e/6)∫(0/1)(x-1)^2 d e^[-(x-1)^2 应用分部积分可得到:
=(e/6)(x-1)^2e^[-(x-1)^2] (0/1)+(e/6)e^[-(x-1)^2](0/1)
=(e/6)e^[-(x-1)^2](x^2-2x+2) (0/1)
=(e-2)/6.
一道微积分题目设f(x)=∫(0到x)e^(-y^2+2y)dy求∫(0到1)((x-1)^2)f(x)dx要过程不要只
设f(x)= ∫0-x e^(-y+2y)dy 求∫0-1 [(1-x)^2]f(x)dx
数学题求dy/dx设 f'(x)=sin√x 定义(x>0),又y=f[e^(2x)]求dy/dx
∫(0到y^2)e^tdt=∫(0到x)lncostdt,求dy/dx
设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0
设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx
y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy
1、设函数y=y(x)由方程e^x-e^y=sin(xy)所确定,求(dy/dx)|x=0;2、设函数f(x)=x^2+
设f(x)=1/(1+x²)+e^x∫(0积到1)f(x)dx,试求:∫(0积到1)f(x)dx.
交换积分次序∫(1,0)dx∫(x,0)f(x,y)dy+∫(2,1)dx∫(2-x,0)f(x,y)dy
设y=f((2x-1)/(x+1)),f'(x)=lnx^(1/3),求dy/dx
设曲线f(x)在[0,1]上可导,且y=f(sin^2x)+f(cos^2x),求dy/dx