作业帮 > 数学 > 作业

已知函数f(X)=2sin(wx-3.14/5)的图像与直线y=-1的交点中最近的两个交点距离为3.14/3,则函数的最

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:53:55
已知函数f(X)=2sin(wx-3.14/5)的图像与直线y=-1的交点中最近的两个交点距离为3.14/3,则函数的最小正周期
3.14表示 pai 在线等,请给出详细答案
已知函数f(X)=2sin(wx-3.14/5)的图像与直线y=-1的交点中最近的两个交点距离为3.14/3,则函数的最
f(x)=2sin(wx-3.14/5)=-1
sin(wx-3.14/5)=-1/2=sin{w[x-3.14/(5w)]}
y=sin(x)与y=-1/2 最近两个交点距离为(-3.14/6)-(3.14*5/6)=6.28/3
y=sin[x-3.14/(5w)] 相当于 y=sin(x) 的左右平移.
y=sin[x-3.14/(5w)]与y=-1/2 最近两个交点距离仍为6.28/3
y=sin(wx-3.14/5)相当与y=sin[x-3.14/(5w)]沿x轴方向伸缩至1/w倍,
则y=sin(wx-3.14/5)与y=-1/2 最近两个交点距离为(1/w)*(6.28/3).
有(1/w)*(6.28/3)=3.14/3
w=2