求不定积分(题如图)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:06:42
求不定积分(题如图)
原式=∫1/xdx-∫ln(1+x)/(x^2)dx
=ln|x|+∫ln(1+x)d(1/x)+c `∫(1/(x^2))dx=-∫d(1/x)
=ln|x|+ln(1+x)*(1/x)-∫(1/x)dln(1+x)+c
=ln|x|+ln(1+x)/x-∫(1/x)*(1/(1+x))dx+c
=ln|x|+ln(1+x)/x-(∫(1/x)dx-∫(1/(1+x))dx)+c
=ln|x|+ln(1+x)/x-ln|x|+ln|1+x|+c1
=ln|1+x|/x+ln|1+x|+c1
=ln|x|+∫ln(1+x)d(1/x)+c `∫(1/(x^2))dx=-∫d(1/x)
=ln|x|+ln(1+x)*(1/x)-∫(1/x)dln(1+x)+c
=ln|x|+ln(1+x)/x-∫(1/x)*(1/(1+x))dx+c
=ln|x|+ln(1+x)/x-(∫(1/x)dx-∫(1/(1+x))dx)+c
=ln|x|+ln(1+x)/x-ln|x|+ln|1+x|+c1
=ln|1+x|/x+ln|1+x|+c1