已知数列{an}中,a1=3,a(n+1)=2an-1(n∈N*).(1)求证:数列{an}是等比数列.(2)设bn=(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:47:53
已知数列{an}中,a1=3,a(n+1)=2an-1(n∈N*).(1)求证:数列{an}是等比数列.(2)设bn=(2^n)/(an*a(n-1)),求证:数列{bn}的前n项和Sn<1/3
你题目抄错了,是求证数列{an-1}是等比数列.数列{bn}的前n项和Sn>1/3
1、因为 a(n+1)=2an-1
所以a(n+1)-1=2an-2=2(an-1)
所以数列{an-1}是以a1-1=3-1=2为首项为2,2 为公比的等比数列
所以an-1=2*2^(n-1)
即an=2^n+1
2、bn=(2^n)/(an*a(n-1))=2^n/[(2^n+1)(2^(n-1)+1)]=2[1/(2^(n-1)+1)-1/(2^n+1)]
于是Sn=b1+b2+b3+.+bn=2(1/2-1/(2+1)+1/(2+1)-1/(2²+1)+1/(2²+1)-1/(2³+1)+.+1/((2^(n-1)+1)-1/(2^n+1))
=2(1/2-1/(2^n+1))=(2^n-1)/(2^n+1)>1/3
1、因为 a(n+1)=2an-1
所以a(n+1)-1=2an-2=2(an-1)
所以数列{an-1}是以a1-1=3-1=2为首项为2,2 为公比的等比数列
所以an-1=2*2^(n-1)
即an=2^n+1
2、bn=(2^n)/(an*a(n-1))=2^n/[(2^n+1)(2^(n-1)+1)]=2[1/(2^(n-1)+1)-1/(2^n+1)]
于是Sn=b1+b2+b3+.+bn=2(1/2-1/(2+1)+1/(2+1)-1/(2²+1)+1/(2²+1)-1/(2³+1)+.+1/((2^(n-1)+1)-1/(2^n+1))
=2(1/2-1/(2^n+1))=(2^n-1)/(2^n+1)>1/3
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s
已知数列{an}中,a1=3,a(n+1)=2an-1(n∈N*).(1)求证:数列{an}是等比数列.(2)设bn=(
在数列{an}中,已知a1=-1,an+a(n+1)+4n+2=0 (1)求bn=an+2n,求证:{bn}为等比数列
在数列{an}中,a1=1,an+1=[(n+1)/n]*an+2(n+1),设bn=an/n,(1)证明数列{bn}是
已知数列An,Sn是它的前n项和,A1=1,S(n+1)=4An+2,设Bn=A(n+1)-2An求证Bn是等比数列,并
已知数列{an}中a1=-1且(n+1)an,(n+2)an+1(是下标)成等差数列,设bn=(n+1)an-n+2求证
一道数列与不等式题数列{an}中,a1=2,an+1=(n+1)an/2n设bn=an/n,求证{bn}是等比数列设bn
已知数列{an}中,a1=3,an+1-2an=0,数列{bn}中,bn*an=(-1)^n (n是正整数) (1)求数
已知数列an中,a1=1/2,2a(n+1)-an=n,(n属于自然数)设bn=a(n+1)-an-1,求证,bn是等比
已知数列(An)中,A1=1/3,AnA(n-1)=A(n-1)-An(n>=2),数列Bn满足Bn=1/An
已知数列{an}满足a1=1,a(n+1)=3an+2(n属于N) 1.求证数列{an+1}是等比数列 2.求{an}的
已知数列{an}中,a1=2,a(n+1)=an2+2an(n∈N*).(1)证明数列{lg(1+an)}是等比数列,