高等代数问题,n阶矩阵A,B特征值都大于零,A^2=B^2证A=B,求各位大神非多项式拆分的解法
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 08:47:43
高等代数问题,n阶矩阵A,B特征值都大于零,A^2=B^2证A=B,求各位大神非多项式拆分的解法
刚刚看到有人用这么解,虽然看懂了,但是对于我对它的解题的思想非常陌生,请问还有别的方法可作吗,我看到的是:
首先容易验证A和B的特征多项式相同,记为f(x),那么f(A)=f(B)=0.
再把f(x)拆成奇数次项和偶数次项两部分 f(x) = g(x) + x h(x),其中g和h都只含x的偶数次幂,
那么 g(A)+A*h(A) = 0 = g(B) + B*h(B),另外注意g(A)=g(B),h(A)=h(B),所以(A-B)h(A)=0.
只需要验证h(A)可逆即得A=B.
对于A的任何特征值t>0,0=f(t)=g(t)+t*h(t),若h(t)=0则g(t)=0,可得f(-t)=0,这与A的特征值全大于0矛盾,所以h(t)非零,即h(A)非奇异.
楼上的做法第一步额外假定了AB=BA,否则不能得到A^2-B^2=(A+B)(A-B).
最后一句话多余了
刚刚看到有人用这么解,虽然看懂了,但是对于我对它的解题的思想非常陌生,请问还有别的方法可作吗,我看到的是:
首先容易验证A和B的特征多项式相同,记为f(x),那么f(A)=f(B)=0.
再把f(x)拆成奇数次项和偶数次项两部分 f(x) = g(x) + x h(x),其中g和h都只含x的偶数次幂,
那么 g(A)+A*h(A) = 0 = g(B) + B*h(B),另外注意g(A)=g(B),h(A)=h(B),所以(A-B)h(A)=0.
只需要验证h(A)可逆即得A=B.
对于A的任何特征值t>0,0=f(t)=g(t)+t*h(t),若h(t)=0则g(t)=0,可得f(-t)=0,这与A的特征值全大于0矛盾,所以h(t)非零,即h(A)非奇异.
楼上的做法第一步额外假定了AB=BA,否则不能得到A^2-B^2=(A+B)(A-B).
最后一句话多余了
A B特征值相同 去证他们对应特征子空间也相同,又因为正定所以可对角化 所以直和为V,所以存在正交P.
高等代数问题,n阶矩阵A,B特征值都大于零,A^2=B^2证A=B,求各位大神非多项式拆分的解法
高等代数/线性代数:n阶矩阵A、B可换,B幂零,证A与A+B有相同的特征多项式.
高等代数题:设A和B都是非零矩阵,且AB=0.则
高等代数行列式问题n阶矩阵A=(aij),aii=a,aij=b/2(j=n-i+1),其余aij=0.求det(A)的
高等代数:已知N阶矩阵,A,B有相同的特增值且每个特征值互不相同.求证存在N阶矩阵P,Q,使得PQ=A,QP=B
线性代数设A为n阶矩阵,且A^9=0,则A A=0 B A有一个非零特征值 C A的特征值全为零 D A有n个线性无关的
高等代数证明:A、B皆为n阶方阵,如果AB=BA,且A有n个不同的特征值,证明B相似于对角
设三阶矩阵A的特征值为2 1 0 非零矩阵B满足BA=0则r(B)=
已知三阶矩阵A的特征值为 -1,1,2,矩阵B=A-3A^2.试求B的特征值和detB.
高等代数的问题:V的线性变换σ和τ在基α1,α2,……,αn下的矩阵分别为A和B,
A,B为正定矩阵,证:AB的特征值全部大于零.
一道高等代数的问题,设A与B都是n阶方阵.证明:如果AB = O,那么秩A + 秩B ≤ n .