作业帮 > 数学 > 作业

已知,a1=1/3 且前N项的算术平均数等于第N项的2N-1倍 求前5项,并用数学归纳法证明an=1/(2n-1)(2n

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 13:12:38
已知,a1=1/3 且前N项的算术平均数等于第N项的2N-1倍 求前5项,并用数学归纳法证明an=1/(2n-1)(2n+1)成立
已知,a1=1/3 且前N项的算术平均数等于第N项的2N-1倍 求前5项,并用数学归纳法证明an=1/(2n-1)(2n
(a1+a2+a3+……an)/n=(2n-1)*an,n分别取1到5求出5项,
数学归纳法,前面略,就说后面
Sn=(a1+a2+a3+……an)=n*(2n-1)*an 1*
S(n+1)=(a1+a2+a3+……a(n+1))=(n+1)*(2n+1)*a(n+1) 2*
2*-1*得 a(n+1)=(n+1)*(2n+1)*a(n+1) -n*(2n-1)*an
化简就得到答案了
再问: 数学归纳法!
再答: 这就是归纳法,看不懂吗,省了前面的假设,就是设an=1/(2n-1)(2n+1),我后面证明的就是求出a(n+1)