已知直线l: (1+k)x+(2k-1)y+6=0 证明无论k取何值直线l恒过定点 k取何值时原点到直线l距离最大
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:25:46
已知直线l: (1+k)x+(2k-1)y+6=0 证明无论k取何值直线l恒过定点 k取何值时原点到直线l距离最大
(1+k)x+(2k-1)y+6=0
x+kx+2ky-y+6=0
(x+2y)k+x-y+6=0
当x+2y=0时,x-y+6=0
解这个方程组得:
x=-4;y=2
那么:k取何值直线l恒过定点(-4,2)
原点到直线l距离=6/根号[(1+k)²+(2k-1)²]
要使原点到直线l距离最大,只要使(1+k)²+(2k-1)²最小
(1+k)²+(2k-1)²=k²+2k+1+4k²-4k+1
=5k²-2k+2
=5(k-1/5)²+2-1/5
所以:当k=1/5时,上式最小,那么原点到直线l距离最大.
x+kx+2ky-y+6=0
(x+2y)k+x-y+6=0
当x+2y=0时,x-y+6=0
解这个方程组得:
x=-4;y=2
那么:k取何值直线l恒过定点(-4,2)
原点到直线l距离=6/根号[(1+k)²+(2k-1)²]
要使原点到直线l距离最大,只要使(1+k)²+(2k-1)²最小
(1+k)²+(2k-1)²=k²+2k+1+4k²-4k+1
=5k²-2k+2
=5(k-1/5)²+2-1/5
所以:当k=1/5时,上式最小,那么原点到直线l距离最大.
已知直线l: (1+k)x+(2k-1)y+6=0 证明无论k取何值直线l恒过定点 k取何值时原点到直线l距离最大
关于直线方程无论k取何值,求直线(2k+1)x-(k-2)y-(k+8)=0恒过定点坐标
已知(k+1)x-(k-1)y-2k=0为直线L的方程.求证:不论K取何实数,直线L必过定点,并求出这个定点的坐标.
问道解析几何请用共点直线系做,已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证:无论k取何实数,直线l必过定
直线l:y=k(x-2)+1 椭圆x^2/16+y^2/9=1,证明,无论k取何值,直线l恒与椭圆相交
求证无论K取何直,直线(1+4K)x -(2-3K)y+(2-14K)=0必过一个定点,求此定点
无论实数k取何值,直线kx-y+2+2k=0恒过定点什么
已知直线l:kx-y+1+2k=0(k∈R),证明直线l过定点
已知直线L:KX-Y+1+2K=0,求证:不管k取何值,直线L始终经过第二象限
已知直线l:kx-y+2k=0,证明:直线l过定点
已知直线l:(2k-1)x-(k+3)y-k+11=0求对于任意实数k直线l与点P(-1,-1)的距离d的取值范围
已知圆C:x^2+y^2-4x-2y+1=0,直线l:3x-4y+k=0,圆上存在两点到直线l距离为1,则k的取值范围是