作业帮 > 数学 > 作业

线性代数题:证明:如果n阶实对称矩阵A满足A∧5-2A∧4+5A∧3-8A∧2-9E=0,则A一定是正定矩阵.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 14:14:17
线性代数题:证明:如果n阶实对称矩阵A满足A∧5-2A∧4+5A∧3-8A∧2-9E=0,则A一定是正定矩阵.
线性代数题:证明:如果n阶实对称矩阵A满足A∧5-2A∧4+5A∧3-8A∧2-9E=0,则A一定是正定矩阵.
证:设a是A的特征值.
则 a^5-2a^4+5a^3-8a^2-9 是 A^5-2A^4+5A^3-8A^2-9E 的特征值.
而 A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0
所以 a^5-2a^4+5a^3-8a^2-9 = 0
易知,当a 0.
所以A的特征值都大于0
所以A是正定矩阵.