一:数列{an}中,前n项和为Sn=3^+1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 11:07:39
一:数列{an}中,前n项和为Sn=3^+1
(1)求a1
(2)求通项公式an
(3)该数列是不是等比数列,如不是,请说出理由.如是请给出证明并说出公比
二:棱长为1的正方体ABCD-A1B1C1D1中,定点A到平面A1C1D的距离为?
三:过双曲线x^2-y^2/2=1的右焦点作直线L交双曲线于A B两点,若有丨AB丨=4,则满足条件的直线有几条?
四:解不等式:3x-1/2-x小于或等于1
(1)求a1
(2)求通项公式an
(3)该数列是不是等比数列,如不是,请说出理由.如是请给出证明并说出公比
二:棱长为1的正方体ABCD-A1B1C1D1中,定点A到平面A1C1D的距离为?
三:过双曲线x^2-y^2/2=1的右焦点作直线L交双曲线于A B两点,若有丨AB丨=4,则满足条件的直线有几条?
四:解不等式:3x-1/2-x小于或等于1
一,题目打漏了的指数是不是n?就当是来做吧.
a1=S1=3+1=4
n>=2时,an=Sn-Sn-1=3^n-3^(n-1)=2*3^(n-1)
n=1代入上式,2*3^(n-1)=2不是前面求得的4
所以,an=4,(n=1)
=2*3^(n-1) (n>=2)
该数列不是等比数列.因为第二项与第一项的比不等于第三项与第二项的比.应该说,从第二项起,才是等比数列.
二.距离是三分之根号三.
方法一,用等积法来求.
方法二,因为AD1与平面A1C1D的交点是AD1的中点,所以,A到平面的距离等于D1到平面的距离.而D1到平面的距离是三分之根号三(可用直接法或等积法求得).
不细述了.
三,a=1,b=根号2,c=根号3,当直线AB与X轴垂直时,将x=根号3代入双曲线方程得y=2或-2,所以,此时AB=4,满足这个条件的直线有且仅有这一条.
四,分式不等式,移项,通分,因式分解,然后用轴根法.易得答案是x小于等于1/2或2小于x小于或等于3.
a1=S1=3+1=4
n>=2时,an=Sn-Sn-1=3^n-3^(n-1)=2*3^(n-1)
n=1代入上式,2*3^(n-1)=2不是前面求得的4
所以,an=4,(n=1)
=2*3^(n-1) (n>=2)
该数列不是等比数列.因为第二项与第一项的比不等于第三项与第二项的比.应该说,从第二项起,才是等比数列.
二.距离是三分之根号三.
方法一,用等积法来求.
方法二,因为AD1与平面A1C1D的交点是AD1的中点,所以,A到平面的距离等于D1到平面的距离.而D1到平面的距离是三分之根号三(可用直接法或等积法求得).
不细述了.
三,a=1,b=根号2,c=根号3,当直线AB与X轴垂直时,将x=根号3代入双曲线方程得y=2或-2,所以,此时AB=4,满足这个条件的直线有且仅有这一条.
四,分式不等式,移项,通分,因式分解,然后用轴根法.易得答案是x小于等于1/2或2小于x小于或等于3.
一:数列{an}中,前n项和为Sn=3^+1
数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn
数列{an}前N项和Sn.3Sn =(an-1),(n)为下标.求证{an}为等比数列
已知数列{an}的前n项和为Sn,Sn=(an-1)/3 (n∈N)
已知数列an中,an=2n-1(n为奇数)an=3^n(n为偶数),求其前n项和sn
已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)/2证明数列{an+1-an}是等差数列
已知数列{an}中,an=(2n+1)3n,求数列的前n项和Sn
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
设数列{an}中前n项和Sn=2an+3n-7.(1)证明:数列{an-3}为等比数列;(2)求通项公式
已知数列{an}前n项和为Sn,且Sn=-2an+3
已知数列{an}的前n项和为Sn=1/3(an-1)
已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数,求证数列{An+1/2}为等比数列