作业帮 > 数学 > 作业

用数学归纳法证明: 对任何正整数n,(3n+1)7^n-1能被9整除

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:15:16
用数学归纳法证明: 对任何正整数n,(3n+1)7^n-1能被9整除
用数学归纳法证明: 对任何正整数n,(3n+1)7^n-1能被9整除
(1)当n=1时 (3*1+1)*7-1=27能被9整除
(2)假设当n=k时 (3k+1)*7^k-1能被9整除
则当n=k+1时 [3(k+1)+1]*7^(k+1)-1=[21k+28]*7^k-1
=(3k+1)*7^k-1+(18k+27)*7^k
=[(3k+1)*7^k-1]+9(2k+3)*7^k
括号中的代数式能被9整除 9(2k+3)*7^k能被9整除
所以当n=k+1时 [3(k+1)+1]*7^(k+1)-1能被9整除
综合(1)(2)可知 对于任意自然数n 有(3n+1)*7^n-1能被9整除