作业帮 > 数学 > 作业

若f(x)连续 ∫f(t)dt在0到x的积分是x^2/2 则∫1/√x * f(√x)dx 在0到4上得积分等于多少

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:12:23
若f(x)连续 ∫f(t)dt在0到x的积分是x^2/2 则∫1/√x * f(√x)dx 在0到4上得积分等于多少
若f(x)连续 ∫f(t)dt在0到x的积分是x^2/2 则∫1/√x * f(√x)dx 在0到4上得积分等于多少
∫[0,4] 1/√x * f(√x)dx
=2∫[0,4] f(√x)d√x
=2*x/2[0,4]
=4