设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:52:28
设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a
(2)求实数a的取值范围,使得对任意的x属于(0,3e],恒有f(x)小于等于4e^2成立
(2)求实数a的取值范围,使得对任意的x属于(0,3e],恒有f(x)小于等于4e^2成立
(I)求导得f′(x)=2(x-a)lnx+ =(x-a)(2lnx+1- ),
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,符合题意,
所以a=e,或a=3e
(II)①当0<3a≤1时,对于任意的实数x∈(0,3a],恒有f(x)≤0<4e2成立,即0<a≤ 1/3符合题意
②当3a>1时即a> 1/3 时,由①知,x∈(0,1]时,不等式恒成立,故下研究函数在(1,3a]上的最大值,
首先有f(3a)=(3a-a)2ln3a=4a2ln3a此值随着a的增大而增大,故应有
4a2ln3a≤4e2即a2ln3a≤e2,
故参数的取值范围是0<a≤ 1/3或a> 1/3 且a2ln3a≤e2,
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,符合题意,
所以a=e,或a=3e
(II)①当0<3a≤1时,对于任意的实数x∈(0,3a],恒有f(x)≤0<4e2成立,即0<a≤ 1/3符合题意
②当3a>1时即a> 1/3 时,由①知,x∈(0,1]时,不等式恒成立,故下研究函数在(1,3a]上的最大值,
首先有f(3a)=(3a-a)2ln3a=4a2ln3a此值随着a的增大而增大,故应有
4a2ln3a≤4e2即a2ln3a≤e2,
故参数的取值范围是0<a≤ 1/3或a> 1/3 且a2ln3a≤e2,
设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a
设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a (2)求实数a的取值范围,使得
设a属于R 函数f(x)=ax^3-3x^2 若x=2是函数y=f(x)的极值点 求a
已知函数f(x)=(1-a+lnx)/x,a属于R,求f(x)的极值.
已知函数f(x)=x+a/x+lnx(a属于R) (1)求函数的单调区间和极值点(2)若对任意a属于[1/e,2e^2]
设函数f(x)=(x-a)^2x,a属于R (1)若x=1为函数的极值点,求实数a的值
设函数f(x)=Inx+x^2-2ax+a^2,a属于R,求f(x)极值点
设a属于R,函数f(x)=ax^3-3x^2,(1)x=2是函数y=f(x)的极值点.
设a为实数,函数f(x)=e的x方-2x+2a x属于R 求f(x)的单调区间与极值 求证当a大于ln2-1且x大于0时
设a为实数,函数f(x)=e^x-2x+2a,x属于R.求,f(x)的单调区间与极值.2.求证:当a>ln2-1且x>0
设函数f(x)=ax^2+bx+c(a,b,c∈R)若x=-1为函数f(x)e^x的一个极值点,则下列图像不可能为y=f
设函数f(x)=ax^2+bx+c(a,b,c∈R)若x=-1为函数f(x)e^x的一个极值点,则下列图像不可能为y=f