变限积分[a,b]上的积分∫[f(x+h)-f(x)]dx令x+h=t,那原式=∫[a+h,b+h]f(t)dt-∫[a
变限积分[a,b]上的积分∫[f(x+h)-f(x)]dx令x+h=t,那原式=∫[a+h,b+h]f(t)dt-∫[a
设函数f(x)在[A,B]上连续,证明lim(h→0) 1/h*∫(x,a)[f(t+h)-f(t)]dt=f(x)-f
变限积分求道问题对函数 f(t+h)-f(t-h) 在[-h,h]上的积分对h求导.F(h)=∫[-h,h]f(t+h)
设f∈C[A,B],a,b∈(A,B),证明:lim1\h ∫ (f(x+h)-f(x))dx=f(b)-f(a) (h
变上限积分a→x,f(t)dt是() A、f'(x)的一个原函数 B、f'(x)的全体原函数 C、f(
变上限的定积分F(x)=∫a^x f(t)dt x和t有什么关系
d[A(x)到B(x)积分f(x,t)dt]/dx
定积分求导的推导∫f(t)dt 积分限为(a(x),b(x))那么该函数对x求导为 f(b(x))b(x)'-f(a(x
设f(x)在区间[a,b]上连续,则∫f(x)dx-∫f(t)dt(区间都是[a,b])的值为?
变上限积分a→x,f(t)dt是() A、f'(x)的一个原函数 B、f'(x)的全体原函数 C、f(x)的一个原函数
f(x)可积,证明变限积分∫f(t)dt连续,上限x,下限a
实变函数题证明,若f(x)在【a-s,b+s】上可积,则h趋于0时,|f(x+h)-f(x)|在【a,b】上积分趋于0(