对于所含元素为实数的集合A,若a属于A,则(1+a)/(1-a)属于A
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 22:13:03
对于所含元素为实数的集合A,若a属于A,则(1+a)/(1-a)属于A
对于所含元素为实数的集合A,若a属于A,则(1+a)/(1-a)属于A
1.已知2属于A,求集合A
2.试找出一个数b,使b属于A,并求出集合A
3.根据已知条件和第1、2小题的结果,能得出什么结论,写两个,不用证明
最好清晰点,讲明白
对于所含元素为实数的集合A,若a属于A,则(1+a)/(1-a)属于A
1.已知2属于A,求集合A
2.试找出一个数b,使b属于A,并求出集合A
3.根据已知条件和第1、2小题的结果,能得出什么结论,写两个,不用证明
最好清晰点,讲明白
1、2∈A,则
(1+2)/(1-2)=-3∈A
(1-3)/(1+3)=-1/2∈A
(1-1/2)/(1+1/2)=1/3∈A
因为(1+1/3)/(1-1/3)=2,所以A中元素是2、-3、-1/2、1/3,即A={2,-3,-1/2,1/3}
2、a∈A,(1+a)/(1-a)∈A,则
[1+(1+a)/(1-a)]/[1-(1+a)/(1-a)]=-1/a∈A
[1+(-1/a)]/[1-(-1/a)]=(a-1)/(a+1)∈A
而[1+(a-1)/(a+1)]/[1-(a-1)/(a+1)]=a,所以
A={a,-1/a,(1+a)/(1-a),(a-1)/(a+1)}
3、结论1:1和0都不在集合A中
结论2:A中元素成对出现,这两个元素的乘积是-1
(1+2)/(1-2)=-3∈A
(1-3)/(1+3)=-1/2∈A
(1-1/2)/(1+1/2)=1/3∈A
因为(1+1/3)/(1-1/3)=2,所以A中元素是2、-3、-1/2、1/3,即A={2,-3,-1/2,1/3}
2、a∈A,(1+a)/(1-a)∈A,则
[1+(1+a)/(1-a)]/[1-(1+a)/(1-a)]=-1/a∈A
[1+(-1/a)]/[1-(-1/a)]=(a-1)/(a+1)∈A
而[1+(a-1)/(a+1)]/[1-(a-1)/(a+1)]=a,所以
A={a,-1/a,(1+a)/(1-a),(a-1)/(a+1)}
3、结论1:1和0都不在集合A中
结论2:A中元素成对出现,这两个元素的乘积是-1
对于所含元素为实数的集合A,若a属于A,则(1+a)/(1-a)属于A
已知集合A的元素全为实数,且满足:若a属于A则(1+a)/(1-a)属于A.
设集合A中的元素为实数,当a属于A时,1/1-a属于A.(1)证明若a属于A,则1- 1/a属于A (2)若2属于A,求
设集合A中的元素为实数,当a属于A时,1/1-a属于A,(1)证明:若a属于A,则1-1/a属于A(2)若2属于A,求集
设A为满足下列条件的实数所构成的集合:1.A内不含1;2.若a属于A,则1/1-a 属于A.
已知集合A的元素全为实数,且满足:若a属于A.则(1+a)/(1-a)属于A.(1)若a=3,求出A中其他所有元素,..
已知集合A的全体元素是实数,且满足:若a属于A,则(a-1)/(a+1)属于A
急不包括0,-1和1的实数集合A满足条件:若a属于A,则1+a/1-a属于A.(1)已知2属于A,求出A中其他元素;(2
由实数a,-a,|a|,所组成的集合里,所含元素为
若 a+1分之a-1属于集合A,且集合A中只含有一个元素a,则a的值为?
已知由实数组成的集合A满足:若x属于A,则1/1-x∈A.若2∈A,求A中的所有元素
设A为实数集,且满足条件:若a属于A,则1/1-a属于A(a不等于1)求证:集合A不可能是单元素集