设a,b,c是实数,满足abc=1,证明:2a-(1/b),2b-(1/c),2c-(1/a)中最多有两个数大于1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 12:58:54
设a,b,c是实数,满足abc=1,证明:2a-(1/b),2b-(1/c),2c-(1/a)中最多有两个数大于1
由 abc=1,可知a,b,c中可以有两个是负数,此时结论显而易见,以下证明三个均为正数时的情况用反证法
假设2a-(1/b)=2a-ac>1,2b-(1/c)=2b-ab>1,2c-(1/a)=2c-bc>1
就2a-ac>1则:1-2a+ac<0,现在考虑一个抛物线:y=x²-2ax+ac
因为x=1代入抛物线式子中有y=1-2a+ac<0
所以该抛物线经过x轴下方一点,所以开口向上抛物线与x轴必有两个不同交点,△>0
所以4a²-4ac>0 ,
a²>ac
同理b²>ab
c²>bc
三个式子相乘:
a²b²c²>a²b²c²
即1>1
不成立,矛盾,所以假设错误.
因此2a-(1/b),2b-(1/c),2c-(1/a)中最多有两个数大于1
(简单题只能用初等方法解决,高等方法偏导听不懂,也解决不了)
假设2a-(1/b)=2a-ac>1,2b-(1/c)=2b-ab>1,2c-(1/a)=2c-bc>1
就2a-ac>1则:1-2a+ac<0,现在考虑一个抛物线:y=x²-2ax+ac
因为x=1代入抛物线式子中有y=1-2a+ac<0
所以该抛物线经过x轴下方一点,所以开口向上抛物线与x轴必有两个不同交点,△>0
所以4a²-4ac>0 ,
a²>ac
同理b²>ab
c²>bc
三个式子相乘:
a²b²c²>a²b²c²
即1>1
不成立,矛盾,所以假设错误.
因此2a-(1/b),2b-(1/c),2c-(1/a)中最多有两个数大于1
(简单题只能用初等方法解决,高等方法偏导听不懂,也解决不了)
设a,b,c是实数,满足abc=1,证明:2a-(1/b),2b-(1/c),2c-(1/a)中最多有两个数大于1
设a.b.c为实数,满足a+b+c=0,abc=1,证明;a.b.c.中有一个大于3/2.
已知实数a、b、c满足abc=1,则2a-(1/b),2b-(1/c),2c-(1/a)这三个数中大于1的数最多有多少个
设实数a,b,c满足a≤b≤c,且a^2+b^2+c ^2=9.证明abc+1>3a
设三个正实数a.b.c满足条件1\a+1\b+1\c=2求证:a.b.c 中至少有两个不小于1
已知a,b,c都是实数,且a+b+c=0,abc=1,求证a,b,c中有且只有一个数大于3/2
已知a,b,c是正实数,满足a^2=b(b+c),b^2=c(c+a).证明:1/a+1/b=1/c
设实数a b c满足a平方+b平方+c平方=1 证明|a-b|,|b-c|,|c-a|中必有一个《2分之根号2
实数abc,满足a>b>c,且a+b+c=1,a^2+b^2+c^2=1,求证a+b大于1小于4/3
已知三个实数a、b、c满足a+b+c=0,abc=1,求证:a、b、c中至少有一个大于32
已知a,b,c为实数,a+b+c=0,abc=1,用反证法证明a,b,c中至少有一个大于3/2.
1,已知实数a,b,c,满足:a+b+c=2,abc=4 求: