小波分解概念上的基本关系 ,低通分解滤波器,高通分解滤波器,尺度函数,小波函数
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 16:12:25
小波分解概念上的基本关系 ,低通分解滤波器,高通分解滤波器,尺度函数,小波函数
离散小波变换:只知道低通滤波器L和高通滤波器H是否就可以对图像分解,如果是,还需要尺度函数和小波函数有什么用(如果只是空间的基函数,就不需要深究),或者知道两种滤波器是否就能确定尺度函数和小波函数,或者两个滤波器就构造小波?每层图像分解所用的低通滤波器是否就由原低通滤波器插入零值所得,此外,必须有sum(L)=根号2,sum(H)=0,还有sum(L^2)=sum(H^2)=1是必须的吗?另外,重构滤波器与分解滤波器有什么关系?为什么看到某些编程里重构滤波器和分解滤波器长度都不相同?谢绝复制黏贴党
其实我想最终解决的问题是这个http://zhidao.baidu.com/question/983082361126800019.html?quesup2&oldq=1,最近在求解图像子带噪声方差方面有些不懂;ps:在某些文献上所有高频子带方差都是一个值(HH1鲁棒性估计),而在某些去噪图像文献上每个子带噪声方差是不同的(按照他们计算方法(主要是根据滤波器系数九三每层方差)始终得不到预期数据,所以我想是不是我使用的滤波器系数是不是错误的)另外,我感觉方差是变化的,图像分解相当于信号分为不同频谱上,能量坑定有些分散,方差(自相关函数)与功率谱对应,私下认为方差是由变化的,
离散小波变换:只知道低通滤波器L和高通滤波器H是否就可以对图像分解,如果是,还需要尺度函数和小波函数有什么用(如果只是空间的基函数,就不需要深究),或者知道两种滤波器是否就能确定尺度函数和小波函数,或者两个滤波器就构造小波?每层图像分解所用的低通滤波器是否就由原低通滤波器插入零值所得,此外,必须有sum(L)=根号2,sum(H)=0,还有sum(L^2)=sum(H^2)=1是必须的吗?另外,重构滤波器与分解滤波器有什么关系?为什么看到某些编程里重构滤波器和分解滤波器长度都不相同?谢绝复制黏贴党
其实我想最终解决的问题是这个http://zhidao.baidu.com/question/983082361126800019.html?quesup2&oldq=1,最近在求解图像子带噪声方差方面有些不懂;ps:在某些文献上所有高频子带方差都是一个值(HH1鲁棒性估计),而在某些去噪图像文献上每个子带噪声方差是不同的(按照他们计算方法(主要是根据滤波器系数九三每层方差)始终得不到预期数据,所以我想是不是我使用的滤波器系数是不是错误的)另外,我感觉方差是变化的,图像分解相当于信号分为不同频谱上,能量坑定有些分散,方差(自相关函数)与功率谱对应,私下认为方差是由变化的,
这问题问的太深入了,只能大致给你一些框架性的回答.通常的DWT可以从双尺度方程的概念,表明小波基函数可由尺度函数的平移和伸缩的线性组合获得,在数学上是小波空间和尺度空间的问题,在计算上是通过滤波器完成的,尺度函数的傅里叶变换具有低通滤波器的性质,小波函数具有高通滤波器(相当于带通滤波器)的性质,通常根据小波函数和尺度函数设计出相应的H和L
来完成对于该小波函数的小波变换,但如何设计是一个很麻烦的问题,不同种类的小波有不同的滤波器构造方式,你得参考相应的资料,这里是没法说清的.
我不能确定两种滤波器与尺度函数和小波函数有唯一的一一对应的关系,但好像有用它们构造小波的例子.每层图像分解所用的低通滤波器都是一个,matlab通过减少数据量(每一阶数据量减半)来达到小波变换中尺度伸长一倍的效果.
sum(L)=根号2是由于小波系数计算公式中有1/根号2这个系数的关系,这样最终计算的值的和就是1了,而matlab在默认时的滤波器的和是1,当然也可以不是1,可以取2,3,.n(参看dbaux 函数),所以sum(L)也有可能是2,3,.n个根号2,只是等于根号2更加方便说明和计算.sum(H)=0是由小波的定义得到的,可以理解为就是直流分量为0,积分为0,上下波形震荡均值为0.如果sum(L)=根号2,则sum(L^2)=sum(H^2)=1是成立的,但如上所说可能不一定必须.
对于正交小波,重构低通、高通滤波器恰好是分解低通、高通滤波器的逆序.对于双正交小波,这种关系并不成立.但是,Mallat算法仍可以操作双正交小波变换,也就是说可以用不同长度的滤波器来进行小波变换的分解和重构,最典型的例子就是bior小波族,可以用一种长度的滤波器分解,用另一种长度的滤波器重构,这也正是这个算法如此著名之处.
水平有限,仅供参考,多担待吧!
再问: 感谢您能够这么认真用心的作出答复再请教一下:图像二层分解得到子带LH2过程中,相当于先对图像一层分解得到子带LL1(此时用低通滤波器L1表示吧),然后对子带LL1在行上低通滤波(用L2表示吧),其次在列上用高通滤波(H2)得到子带LH2,那么,请问L1和L2是同一个滤波器吗,还是L2是在L1基础上插入零值所得。 你在上面说没层图像分解滤波器是一个是不是意思即是L1和L2完全相同,不需要插入零值
再答: 对于二维的DWT,无论分解多少层,所用的低通和高通分解滤波器是相同的,得到逼近和3方向的细节系数,具体的过程可参考dwt2函数的帮助,那里有详细的流程图,你可以对照到底是行滤波还是列滤波。与一维DWT相比,除了用了张量积之外,二维DWT每次得到的细节和逼近系数都是经过了两次滤波(一维DWT只用一次),每次滤波后都分别进行了偶数列和偶数行的抽样。小波分析中的插零操作通常是对信号数据或小波系数的,最典型的是小波重构的计算,没有针对滤波器的,因为那不科学,滤波器的改变会带来一系列难以解决的问题。
你的另外那个问题,我无能为力了(压根就没看懂),不知道你是搞啥门类的,忒深入了点!
来完成对于该小波函数的小波变换,但如何设计是一个很麻烦的问题,不同种类的小波有不同的滤波器构造方式,你得参考相应的资料,这里是没法说清的.
我不能确定两种滤波器与尺度函数和小波函数有唯一的一一对应的关系,但好像有用它们构造小波的例子.每层图像分解所用的低通滤波器都是一个,matlab通过减少数据量(每一阶数据量减半)来达到小波变换中尺度伸长一倍的效果.
sum(L)=根号2是由于小波系数计算公式中有1/根号2这个系数的关系,这样最终计算的值的和就是1了,而matlab在默认时的滤波器的和是1,当然也可以不是1,可以取2,3,.n(参看dbaux 函数),所以sum(L)也有可能是2,3,.n个根号2,只是等于根号2更加方便说明和计算.sum(H)=0是由小波的定义得到的,可以理解为就是直流分量为0,积分为0,上下波形震荡均值为0.如果sum(L)=根号2,则sum(L^2)=sum(H^2)=1是成立的,但如上所说可能不一定必须.
对于正交小波,重构低通、高通滤波器恰好是分解低通、高通滤波器的逆序.对于双正交小波,这种关系并不成立.但是,Mallat算法仍可以操作双正交小波变换,也就是说可以用不同长度的滤波器来进行小波变换的分解和重构,最典型的例子就是bior小波族,可以用一种长度的滤波器分解,用另一种长度的滤波器重构,这也正是这个算法如此著名之处.
水平有限,仅供参考,多担待吧!
再问: 感谢您能够这么认真用心的作出答复再请教一下:图像二层分解得到子带LH2过程中,相当于先对图像一层分解得到子带LL1(此时用低通滤波器L1表示吧),然后对子带LL1在行上低通滤波(用L2表示吧),其次在列上用高通滤波(H2)得到子带LH2,那么,请问L1和L2是同一个滤波器吗,还是L2是在L1基础上插入零值所得。 你在上面说没层图像分解滤波器是一个是不是意思即是L1和L2完全相同,不需要插入零值
再答: 对于二维的DWT,无论分解多少层,所用的低通和高通分解滤波器是相同的,得到逼近和3方向的细节系数,具体的过程可参考dwt2函数的帮助,那里有详细的流程图,你可以对照到底是行滤波还是列滤波。与一维DWT相比,除了用了张量积之外,二维DWT每次得到的细节和逼近系数都是经过了两次滤波(一维DWT只用一次),每次滤波后都分别进行了偶数列和偶数行的抽样。小波分析中的插零操作通常是对信号数据或小波系数的,最典型的是小波重构的计算,没有针对滤波器的,因为那不科学,滤波器的改变会带来一系列难以解决的问题。
你的另外那个问题,我无能为力了(压根就没看懂),不知道你是搞啥门类的,忒深入了点!
小波分解概念上的基本关系 ,低通分解滤波器,高通分解滤波器,尺度函数,小波函数
关于小波分解的滤波器理解
对于一个小波基函数,比如Haar小波,它的高通滤波器的长度或小波函数支撑的长度是1.但是,高通滤波器的长度或小波函数支撑
简述低通滤波器和高通滤波器的作用.
二阶rc低通滤波器的网络函数怎么写?
用窗函数设计FIR滤波器时怎么定义理想高通滤波器响应函数
哪位大神能讲讲Gabor小波,Gabor滤波器,Gabor特征的区别和联系?
何谓滤波器的Q值?低通 高通 带通滤波器
理想低通滤波器、巴特沃斯低通滤波器、指数低通滤波器、梯形低通滤波器之间的区别?
窗函数法设计FIR数字高通滤波器
如何用系统函数判断高通滤波器
RC一阶低通滤波器是不是电容值越大,电阻值越小,能够通过的电磁波频率就越低