f(x)在R上有定义,f(x+y)=f(x)+f(y)+2xy,证明若f'(0)存在,则函数在任一点都可导,并求f'(x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:13:59
f(x)在R上有定义,f(x+y)=f(x)+f(y)+2xy,证明若f'(0)存在,则函数在任一点都可导,并求f'(x)
证明:
令x=y=0,则:
f(0+0)=f(0)+f(0)+2*0*0,即f(0)=0
对R上任何一点x,不放假设T为其上一个微小的偏移量,T -> 0,有:
f(x+T)-f(x)=f(x)+f(T)+2*x*T-f(x)=f(T)+2*T*X
则f(x)在x上的导数为:
[f(x+T)-f(x)]/T = [f(x)+2*T*x]/T = f(T)/T + 2*x
= [f(T)-0]/[T-0] + 2*x
由于f(0)=0,所以有
[f(T)-0]/[T-0] + 2*x = [f(T)-f(0)]/[T-0] + 2*x = f'(0)+2*x
所以若f'(0)存在,则函数在任一点都可导,并且f'(x)=f'(0)+2*x
令x=y=0,则:
f(0+0)=f(0)+f(0)+2*0*0,即f(0)=0
对R上任何一点x,不放假设T为其上一个微小的偏移量,T -> 0,有:
f(x+T)-f(x)=f(x)+f(T)+2*x*T-f(x)=f(T)+2*T*X
则f(x)在x上的导数为:
[f(x+T)-f(x)]/T = [f(x)+2*T*x]/T = f(T)/T + 2*x
= [f(T)-0]/[T-0] + 2*x
由于f(0)=0,所以有
[f(T)-0]/[T-0] + 2*x = [f(T)-f(0)]/[T-0] + 2*x = f'(0)+2*x
所以若f'(0)存在,则函数在任一点都可导,并且f'(x)=f'(0)+2*x
f(x)在R上有定义,f(x+y)=f(x)+f(y)+2xy,证明若f'(0)存在,则函数在任一点都可导,并求f'(x
高数题 抽象函数设函数f(x)在R上有定义,f(x)不等于0,f(xy)=f(x) ^f(y),求f(2005)
设f(x)在R上有定义,对于任意x,y都有f(x+y)=f(x)+f(y)+2xy,且f'(0)存在,求f(x)?
定义在R上的函数f(X)满足任意 x,y属于R恒有f(xy)=f(X)+f(y),且f(X)不恒为0,求f(1)和f(-
定义在R上的函数f(x),满足对任意x y∈R恒有f(xy)=f(x)+f(y) 且f(x)不恒为0 求f(1)和f(-
定义在(0,+∞)上增函数f(x),恒有f(xy)=f(x)+f(y),f(log2x)
定义在R上的函数f(x),对任意x,y ∈R有f(x+y)+f(x-y)=2f(x)*f(y)且f(0)不等于0,则f(
定义域在R上的函数f(x)对实数x,y,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.判断并证明
定义在R上的函数f(x)对任意x,y∈R都有f(x+y)+f(x-y)=2f(x)*f(y),且f(0)≠0,判断f(x
定义在R上的函数f(x)对任意x,y属于R都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0,判断f(x
设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),若f(3)=1,求不等式f(x)-f(x-2)>1的解集
设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1