一道高中竞赛题问是否存在一个从正整数对应到正整数的函数f使得f(f(n))=f(n)+n,并且对所有n有f(n)
一道高中竞赛题问是否存在一个从正整数对应到正整数的函数f使得f(f(n))=f(n)+n,并且对所有n有f(n)
是否存在大于1的正整数m,使得f(n)=(2n+7)·3^n+9对任意正整数n都能被m整除?
是否存在正整数m,使得f(n)=(2n+7)*3^n+9对任意自然数n都能被m整除.若存在,求出最大的m值
1.是否存在大于1的正整m数使得f(n)=n^3+5n对任意正整数n都能被m整除?
n为正整数,f(n)为正整数,f(n)为n的增函数.f[f(n)]=2n+1,求证:4/3
是否存在正整数m,使得f(n)=(2n+7)•3n+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论
归纳 猜想 论证是否存在大于1的正整数m,使得f(n)=(2n+7)*3^n+1对任意正整数n都能被m整除?若存在,求出
定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1
定义在正整数上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1.
数学求表达式定义在正整数集上的函数f(x)对任意m.n属于正整数,都有f(m+n)=f(m)+f(n)+4(m+n)-2
函数f;N+→R满足f(1)=1且对任意正整数n都有f(1)+2f(2)+...+nf(n)=n^2f(n),求f(20
定义在正整数集的函数F(X)对任意m,n 都有F(m+n)=F(m)+F(n)+4(m+n)-·2,且F(1)=1