作业帮 > 综合 > 作业

如图,已知P是矩形ABCD的内的一点.求证:PA2+PC2=PB2+PD2.

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 22:10:00
如图,已知P是矩形ABCD的内的一点.求证:PA2+PC2=PB2+PD2
如图,已知P是矩形ABCD的内的一点.求证:PA2+PC2=PB2+PD2.
证明:过点P作EF⊥AD交AD于点E,BC于点F;过点P作GH⊥AB交AB于点G,CD于点H.则EA=BF,CH=PF,HP=DE.
∴PA2+PC2=EA2+EP2+CH2+HP2
=BF2+EP2+PF2+DE2
=PB2+PD2故:PA2+PC2=PB2+PD2