作业帮 > 数学 > 作业

化简2sin^2(x)sin^2(φ)+2cos^2(x)cos^2(φ)-cos2(x)cos^2(φ)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:30:37
化简2sin^2(x)sin^2(φ)+2cos^2(x)cos^2(φ)-cos2(x)cos^2(φ)
化简2sin^2(x)sin^2(φ)+2cos^2(x)cos^2(φ)-cos2(x)cos^2(φ)
据:cos2(x)=cosx^2-sinx^2=2cosx^2-1得:
2sin^2(x)sin^2(φ)+2cos^2(x)cos^2(φ)-cos2(x)cos^2(φ)
=2sin^2(x)sin^2(φ)+cos^2(φ)
=(2sin^2(x)-1)*sin^2(φ)+sin^2(φ)+cos^2(φ)
=(sin^2(x)-cos^2(x))*sin^2(φ)+1
=-cos2(x)*(1-cos2φ)/2+1