如果g(x)=1+∫f(t)dt(积分上限X下限0)f(x)=cosx-1/x^2(x不等于0) f(x)=-1/2(x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:38:03
如果g(x)=1+∫f(t)dt(积分上限X下限0)f(x)=cosx-1/x^2(x不等于0) f(x)=-1/2(x=0时) 那么当x=0时 g的泰勒展开式的前四项是多少?为什么是1-x/2+x^3/3*4!-x^5/5*6!
一个比较简单的方法:
首先,由变上限积分,g'(x) = f(x)
如果能求得f(x)的泰勒级数展式,那么通过以下的定理:
若f(x)任意阶可导,且f(x)于x = 0处的展开式为f(x) = f(0) + a1 * x + a2 *x^2 + ...+ an * x^n + o(x^n)
那么f'(x)在x = 0处有展开式f'(x) = a1 + 2 * a2 * x + ...+ n *an * x^(n-1) + o(x^(n-1))
这个定理类似于后面幂级数的“逐项求导”性质,但又不完全相同,证明也不涉及幂级数的知识.是一个求泰勒展开式很好用的公式.
有了上面的准备,实际上我们只用求出题中f(x)前四项的泰勒展式:
由cosx = 1 - x^2 / 2!+ x^4/4!-x^6/6!+ o(x^7),得
f(x) = (cosx - 1)/x^2 = -1/2 + x^2/4!-x^4/6!+ o(x^5)
再由前面提到的定理:
g'(x) = f(x) = -1/2 + x^2/4!-x^4/6!+ o(x^5)
所以g(x) = g(0) -1/2 * x + x^3 / (3*4!) -x^5/(5*6!) + o(x^6)
(这里其实是把那个定理逆过来用了,可以这么理因为g(x)是任意阶可导的,所以它的(带Peano余项)的泰勒展式必定任意阶存在.把它写出来,然后g'(x)也有一个对应的形式.但是我们现在已经知道了g'(x)的展开式的形式,所以就可以推出g(x)的展开式的形式)
首先,由变上限积分,g'(x) = f(x)
如果能求得f(x)的泰勒级数展式,那么通过以下的定理:
若f(x)任意阶可导,且f(x)于x = 0处的展开式为f(x) = f(0) + a1 * x + a2 *x^2 + ...+ an * x^n + o(x^n)
那么f'(x)在x = 0处有展开式f'(x) = a1 + 2 * a2 * x + ...+ n *an * x^(n-1) + o(x^(n-1))
这个定理类似于后面幂级数的“逐项求导”性质,但又不完全相同,证明也不涉及幂级数的知识.是一个求泰勒展开式很好用的公式.
有了上面的准备,实际上我们只用求出题中f(x)前四项的泰勒展式:
由cosx = 1 - x^2 / 2!+ x^4/4!-x^6/6!+ o(x^7),得
f(x) = (cosx - 1)/x^2 = -1/2 + x^2/4!-x^4/6!+ o(x^5)
再由前面提到的定理:
g'(x) = f(x) = -1/2 + x^2/4!-x^4/6!+ o(x^5)
所以g(x) = g(0) -1/2 * x + x^3 / (3*4!) -x^5/(5*6!) + o(x^6)
(这里其实是把那个定理逆过来用了,可以这么理因为g(x)是任意阶可导的,所以它的(带Peano余项)的泰勒展式必定任意阶存在.把它写出来,然后g'(x)也有一个对应的形式.但是我们现在已经知道了g'(x)的展开式的形式,所以就可以推出g(x)的展开式的形式)
如果g(x)=1+∫f(t)dt(积分上限X下限0)f(x)=cosx-1/x^2(x不等于0) f(x)=-1/2(x
设f(x)=x+2∫f(t)dt,积分上限是1,下限是0 其中f(x)为连续函数,求f(x)
定积分证明已知 积分号(上限X,下限0)(x-t)f(t)dt=1-cosx证明:积分号(上限π/2,下限0)f(x)d
变限积分计算已知f(x)=∫(上限x^2下限1)e^(-t^2)dt,计算∫(上限1下限0)xf(x)dx
设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函
已知f(x)=x-2∫f(t)dt 上限1 下限0 求f(x)
设f(x)在0到正无穷上连续,若积分上限f(x),下限0,t^2dt=x^2(x+1),求f(2)
求定积分:∫f(x-1)dx,上限2,下限0,其中f(x)=cosx,若x>=0,f(x)=x+1,若x
设f(x)=定积分(ln(1+t)/t)dt(x>0),上限x,下限1,求f(x)+f(1/x)
126.设F(x)=∫x (积分上限) 0 (积分下限) sint / t dt ,求 F’(0)
f(x)是连续函数,满足f(x)=exp{∫f(t/3)dt},积分上限是3x ,下限是0,求f(x
f为[0,1]上的可积函数 g(x)=积分f(t)/t dt(上限为1,下限为x) 证明在[0,1]上g(x)和f(x)