作业帮 > 数学 > 作业

一道线性代数的题目,F为数域,K为数域,证明F∩K为数域,判断F∪K是否为数域,否给出反例,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 09:02:21
一道线性代数的题目,
F为数域,K为数域,证明F∩K为数域,判断F∪K是否为数域,否给出反例,
一道线性代数的题目,F为数域,K为数域,证明F∩K为数域,判断F∪K是否为数域,否给出反例,
a,b∈F∩K,则a,b∈F且a,b∈K,于是a-b∈F,a-b∈K,从而a-b∈F∩K.当b≠0时,a/b∈F且a/b∈K,从而a/b∈F∩K.
因此F∩K是一个数域.
F=Q(√2),K=Q(√3),显然F∪K不是数域.(例如√2属于F,√3属于K,√2*√3=√6既不属于F,也不属于K,所以不属于F∪K,但如果F∪K是数域的话,又要求√6属于F∪K,这是个矛盾,所以它不是数域)