如图,边长为8的正方形ABCD中,M是BC上的一点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:09:26
如图,边长为8的正方形ABCD中,M是BC上的一点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则GH=______.
∵正方形ABCD的边长为8,CM=2,
∴BM=8-2=6,
根据勾股定理,AM=
AB2+BM2=
82+62=10,
如图,过点B作BN∥GH,则四边形BNHG是平行四边形,
∴BN=GH,
∵GH是AM的垂直平分线,
∴∠CBN+∠AMB=90°,
又∵∠BAM+∠AMB=90°,
∴∠BAM=∠CBN,
在△ABM和△BCN中,
∠BAM=∠CBN
AB=BC
∠ABC=∠BCN=90°,
∴△ABM≌△BCN(ASA),
∴AM=BN,
∴GH=AM=10.
故答案为:10.
∴BM=8-2=6,
根据勾股定理,AM=
AB2+BM2=
82+62=10,
如图,过点B作BN∥GH,则四边形BNHG是平行四边形,
∴BN=GH,
∵GH是AM的垂直平分线,
∴∠CBN+∠AMB=90°,
又∵∠BAM+∠AMB=90°,
∴∠BAM=∠CBN,
在△ABM和△BCN中,
∠BAM=∠CBN
AB=BC
∠ABC=∠BCN=90°,
∴△ABM≌△BCN(ASA),
∴AM=BN,
∴GH=AM=10.
故答案为:10.
如图,边长为8的正方形ABCD中,M是BC上的一点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,
如图,在正方形ABCD中,M是BC上一点,连接AM,作AM的垂直平分线GH交AB于点G,交CD于点H,已知AM=10cm
如图,正方形ABCD,M是BC上一点,连接AM,作AM的垂直平分线GH交AB于点G,交CD于点H,已知AM=10cm,求
如图,正方形ABCD中,M是BC上一点,连接AM,作AM的垂直平分线GH交AB与点G,交CD于点H,已知AM=10,求G
如图在正方形abcd中,点m是对角线bd上的一点,过点m作me垂直cd交bc于点e,作mf平行bc交cd于点f,求证am
如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作 ME平行CD交BC于点E,作MF平行BC于点F.求证AM=
如图,在正方形ABCD中,E是BC上一点,F是AE上一点,过点F作GH⊥AF,交直线AB于G,交直线CD于H.
如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于H,过H作GH⊥BD于G,
如图,在正方形ABCD中、G是BC上的一点、连接AG、作AG的垂线EF交AB于E点、交CD于F点、已知AG=10cm.求
如图,E是正方形ABCD的边BC上任意一点,FG⊥AE交AB、CD于点F、G.试说明:AE=FG 提示 GH垂直AB于H
如图,正方形ABCD中,M为BC上的任意一点,AN是∠DAM的平分线,且交DC于N,求证:DN+BM=AM
如图,四边形ABCD中,M是BC的中点,EF垂直平分AM,分别交AB,CD于E,F,设正方形的边长为8,则△AEM的面积