向量m=(2cosC/2,-sinC) n=(cosC/2,2sinC) 向量m⊥n 角C=60° 若a²=2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:10:04
向量m=(2cosC/2,-sinC) n=(cosC/2,2sinC) 向量m⊥n 角C=60° 若a²=2b²+c²求tanA的值
m⊥n
=>m.n=0
(2cos(C/2),-sinC).(cos(C/2),2sinC)=0
2(cosC/2)^2-2(sinC)^2=0
(2(cosC/2)^2-1)-2(sinC)^2+1=0
cosC-2(sinC)^2+1=0
cosC - (2-2(cosC)^2)+1=0
2(cosC)^2+cosC-1=0
cosC = (-1+3)/4 = -1/2
C=2π/3
sinC = √3/2
a^2 =2b^2+c^2
c^2 = a^2+b^2 - 3b^2
by cosine rule
-3b^2 =-2abcosC
cosC = (3b/(2a)) = -1/2
b= -a/3
a^2 =2b^2+c^2
= b^2 + c^2 +b^2
by cosine -rule
-2bccosA = b^2
cosA = -b/(2c)
= -b/ (2asinC/sinA)
tanA = -2asinC/b
= -2a(√3/2))/( -a/3)
= 3√3
=>m.n=0
(2cos(C/2),-sinC).(cos(C/2),2sinC)=0
2(cosC/2)^2-2(sinC)^2=0
(2(cosC/2)^2-1)-2(sinC)^2+1=0
cosC-2(sinC)^2+1=0
cosC - (2-2(cosC)^2)+1=0
2(cosC)^2+cosC-1=0
cosC = (-1+3)/4 = -1/2
C=2π/3
sinC = √3/2
a^2 =2b^2+c^2
c^2 = a^2+b^2 - 3b^2
by cosine rule
-3b^2 =-2abcosC
cosC = (3b/(2a)) = -1/2
b= -a/3
a^2 =2b^2+c^2
= b^2 + c^2 +b^2
by cosine -rule
-2bccosA = b^2
cosA = -b/(2c)
= -b/ (2asinC/sinA)
tanA = -2asinC/b
= -2a(√3/2))/( -a/3)
= 3√3
向量m=(2cosC/2,-sinC) n=(cosC/2,2sinC) 向量m⊥n 角C=60° 若a²=2
向量m=(2cosC/2,-sinC),向量n=(cosC/2,2sinC)且向量m⊥向量n.1求角C的大小.2若a^2
设平面向量m=(cosc+sinb,-sinb),n=(cosc-sinb,sinc),m.n=cos^2a
在三角形ABC中,向量m=(2cosc/2,-sinc),n=(cosc/2,2sinc).且m垂直n.若a^2=2b^
在三角形ABC中,角A,B,C的对边分别为a,b,c,向量m=(2cosc/2,-sinc),n(cosc/2,2sin
在三角形ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(2cosC/2,-sinC),n=(cosC/2,2
在三角形ABC中、a、b、c分别为角A、B、C所对的边,向量m=(cosC/2,sinC/2),n=(cosC/2,-s
在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(1-sinC/2,-1),n=(1,sinC+cosC),且
在三角形ABC中,三内角A,B,C成等差数列,向量m=(1+cos2A,-2sinC),n=(tanA,cosC)
已知O为锐角三角形ABC的外心,角B=30°,若(向量)BA*cosA/sinC+(向量)BC*cosC/sinA=2m
已知A B C 为三角形ABC的三个内角,它们的对边分别为abc,若,向量M=(cosB,sinC),向量N=(cosC
平面向量m=(2a+c,b)与平面向量n=(cosB,cosC)垂直求角B