函数f(x)的解析式为f(x)=sin(2x+π/3)-根号3sin²x+sinxcosx+根号3/2
函数f(x)的解析式为f(x)=sin(2x+π/3)-根号3sin²x+sinxcosx+根号3/2
函数f(x)=2cosxsin(x+π/3)-根号3sin²x+sinxcosx
已知函数f(X)=sin²x+2根号3sinxcosx-cos²x
已知函数f(x)=sin^x+根号3sinxcosx+2cos^x,x属于R
已知函数f(x)=sin^2 x+2根号3sinxcosx+sin(x+π/4)sin(x-π/4),x属于R,求f(x
函数f(x)=sin^4x+2根号3sinxcosx-cos^4x的值域为
已知函数f(x)=2sin²x+2根号3sinxcosx+1
已知函数f(x)=2cosx*sin(x+π/3)-根号3sin^x+sinxcosx 1.求函数f(x)的单调递减区间
已知函数f(x)=cos^2x-sin^2x+2根号3sinxcosx+1
已知函数f(x)=根号3(sin^2x-cos^2x)-2sinxcosx
已知函数f(x)=2根号3sinxcosx+2sin^2x-1,x
已知函数f(x)=2cosxsin(x+60°)-根号3sin^2x+sinxcosx