线性代数习题求解三阶实对称阵每行元素和都等于二,且R(2E+A)=1,求正交阵P,使P-1AP为对角矩阵
线性代数习题求解三阶实对称阵每行元素和都等于二,且R(2E+A)=1,求正交阵P,使P-1AP为对角矩阵
线性代数疑问三阶实对称阵每行元素和都等于二,且R(2E+A)=1,求正交阵P,使P-1AP为对角矩阵
已知三阶实对称矩阵A的每行元素之和都等于2,且R(2E+A)=1(1)求正交阵P,使得P-1AP为对角形矩阵?
设A= ,求一个正交矩阵P,是的P^(-1)AP为对角阵
设实对称矩阵A=1 -2 0 -2 2 -2 0 -2 3 求正交矩阵P,使P^-1AP为对角矩阵.
线性代数中对称矩阵的正交化.求正交阵P使为对角阵
求正交矩阵P,使P^-1AP成为对角矩阵,其中A为:
对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 0 0 0 -1 3 0 3 -1
请在这里概述您的问题对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 1 0 1 3
,求正交矩阵 P 使 P A-1 P 为对角阵
AB均为实对称矩阵,且AB=BA,如果A有n个互异的特征值,证明,存在正交矩阵P使P'AP与P'BP均为对角阵
对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21)