不等式函数性质设函数f(x)=x^2-2(2a-1)x+8(a∈R).若f(x)在(-∞,a]上为减函数且恒不小于0,求
不等式函数性质设函数f(x)=x^2-2(2a-1)x+8(a∈R).若f(x)在(-∞,a]上为减函数且恒不小于0,求
设函数f(x)在R上的导函数为f'(x)且2f(x)+xf'(x)>x2 下面的不等式在R上恒成立的是 A.f(x)>0
设函数f(x)=2x^3-3(a+1)x^2+6ax+8,其中a∈R.若f(x)在(-∞,0)上为增函数,求a的取值范围
设a为实数,函数f(x)=x^2+|x-a|+1,x∈R
设函数f(x)=2x^3-3(a+1)x^2+6ax+8,其中a属于R.若f(x)在负无穷到0上为增函数,求a取值范围
设a是实数.f(x)=a-[2/(2^x+1)] (x∈R).试证明:对于任意a,f(x)在R上为增函数
设a 为实数,函数f(x) = x^2 + |x-a| + 1,x属于R.1)讨论函数f(x)的奇偶性; 2)求函数f(
已知函数f(x)=x^2+a/x(x≠0,常数a∈R) 若函数f(x)在x∈[2,+∞]上为增函数,求a的取值范围
已知函数f(x)=x^2+a/x(x≠0,常数a∈R). 若函数f(x)在x∈[2,+∞)上为增函数,求a的范围
设a为R,函数f(x)=x²+|x-a|+1,x∈R .(1)讨论f(x)的奇偶性;(2)求f(x)的最小值.
设x属于R,f(x)为奇函数,且f(2x)=(a*4^x+a-2)/4^x+1 (1)求函数的反函数g(x)
已知函数f(x)=x^2+a/x(x≠0,常数a∈R) 若函数f(x)在x∈[2,+∞]上