求证tanx+1/tan[(π/4)+X/2]=1/COSX
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:19:34
求证tanx+1/tan[(π/4)+X/2]=1/COSX
tan[(π/4)+X/2]= (tanπ/4+tan X/2)/(1- tanπ/4*tan X/2)
=(1+ tan X/2)/(1- tan X/2)
分子分母同乘以cosx/2可得
=(cosx/2+sinx/2)/( cosx/2-sinx/2)
=[(cosx/2+sinx/2) (cosx/2-sinx/2)]/( cosx/2-sinx/2) ²
=(cos²x/2-sin²x/2) /( cosx/2-sinx/2) ²
=cosx/(1-sinx),
所以1/tan[(π/4)+X/2]= (1-sinx)/cosx,
tanx+1/tan[(π/4)+X/2]= tanx+(1-sinx)/cosx
=sinx/cosx+(1-sinx)/cosx=1/cosx,
∴等式成立.
=(1+ tan X/2)/(1- tan X/2)
分子分母同乘以cosx/2可得
=(cosx/2+sinx/2)/( cosx/2-sinx/2)
=[(cosx/2+sinx/2) (cosx/2-sinx/2)]/( cosx/2-sinx/2) ²
=(cos²x/2-sin²x/2) /( cosx/2-sinx/2) ²
=cosx/(1-sinx),
所以1/tan[(π/4)+X/2]= (1-sinx)/cosx,
tanx+1/tan[(π/4)+X/2]= tanx+(1-sinx)/cosx
=sinx/cosx+(1-sinx)/cosx=1/cosx,
∴等式成立.
求证tanx+1/tan[(π/4)+X/2]=1/COSX
证明tanx+1/cosx=tan(x/2+π/4)
求证:(sin2x)(1+tanx*tan(x/2))/2cosx=tanx
已知3sinb=sin[2a+b]求证sin2x/[2COSx]乘以[1+tanx-tan[x/2]]=tanx
已知tan(π/4+x)=-1/2,求2cosx(sinx-cosx)/1+tanx的值
提问数学难题求证:sin^2x*tanx+cos^2x/tanx+2sinx*cosx=tanx+1/tanx
(sinx+cosx)(tan^2x+1/tanx)=1/cosx+1/sinx
已知tan(pai+x)=-0.5,求【2cosx(sinx-cosx)】/(1+tanx)
1-2sinx cosx /COS^2X-SIN^2X =1-tanx/1+tanx 求证
tanx/2=sinx/1+cosx求证
求证(1-2sinXcosX)/(cosX^2-sin^2X)=(1-tanX)/(1+tanX)
求证:1/tanx-tanx=(2cos^2x-1)/sinx*cosx