已知f(1)=0 且∫上限1 下限0 xf(x)dx=2 求∫上限1 下限0 x^2f'(x)dx
已知f(1)=0 且∫上限1 下限0 xf(x)dx=2 求∫上限1 下限0 x^2f'(x)dx
变限积分计算已知f(x)=∫(上限x^2下限1)e^(-t^2)dt,计算∫(上限1下限0)xf(x)dx
已知2x∫(上限1,下限0) f(x)dx+f(x)=arctanx,求f∫(上限1,下限0) f(x)dx
f(x)=x+∫xf(x)dx 上限1 下限0,求∫f(x)dx,上限1,下限0
f(x)=1/(1+x^2)+(1-x^2)^(1/2)∫(上限1,下限0)f(x)dx.求∫(上限1,下限0)f(x)
大学函数定积分题目f(x)=x^2+x∫f(x)dx(上限1,下限0)+∫f(x)dx(上限2,下限0),求f(x).求
设f(x)是[0,1]上的连续函数且f(x)=x^2 +不定积分(下限0,上限1)∫xf(x)dx
已知∫(上限x下限0)tf(2x-t)dt=0.5arctanx^2 ,f(1)=1 ,求∫(上限2下限1)f(x)dx
∫(上限1,下限0)dy∫(上限y下限0)f(x,y)dx+∫(上限2,下限1)dy∫(上限2-y,下限0)f(x,y)
设f(x)是连续函数,且f(x)=x^2+2∫上限1下限0f(t)dt,试求:(1)∫上限1下限0f(x)dx;求详解?
设f(x)=∫(下限x上限1)sint²dt,则∫(下限0上限1)f(x)dx=__.
证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)