已知三个不同的实数a,b,c满足a-b+c=3,方程x2+ax+1=0和x2+bx+c=0有一个相同的实根,方程x2+x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 22:46:57
已知三个不同的实数a,b,c满足a-b+c=3,方程x2+ax+1=0和x2+bx+c=0有一个相同的实根,方程x2+x+a=0和x2+cx+b=0也有一个相同的实根.求a,b,c的值.
依次将题设中所给的四个方程编号为①,②,③,④.
设x1是方程①和方程②的一个相同的实根,则
x21+ax1+1=0
x21+bx1+c=0
两式相减,可解得x1=
c−1
a−b.(5分)
设x2是方程③和方程④的一个相同的实根,则
x22+x2+a=0
x22+cx2+b=0
两式相减,可解得x 2=
a−b
c−1.
所以x1x2=1.(10分)
又∵方程①的两根之积等于1,于是x2也是方程①的根,
则x22+ax2+1=0.
又∵x22+x2+a=0,两式相减,得(a-1)x2=a-1.(15分)
若a=1,则方程①无实根,
所以a≠1,故x2=1.
于是a=-2,b+c=-1.又a-b+c=3,
解得b=-3,c=2.(20分)
设x1是方程①和方程②的一个相同的实根,则
x21+ax1+1=0
x21+bx1+c=0
两式相减,可解得x1=
c−1
a−b.(5分)
设x2是方程③和方程④的一个相同的实根,则
x22+x2+a=0
x22+cx2+b=0
两式相减,可解得x 2=
a−b
c−1.
所以x1x2=1.(10分)
又∵方程①的两根之积等于1,于是x2也是方程①的根,
则x22+ax2+1=0.
又∵x22+x2+a=0,两式相减,得(a-1)x2=a-1.(15分)
若a=1,则方程①无实根,
所以a≠1,故x2=1.
于是a=-2,b+c=-1.又a-b+c=3,
解得b=-3,c=2.(20分)
已知三个不同的实数a,b,c满足a-b+c=3,方程x2+ax+1=0和x2+bx+c=0有一个相同的实根,方程x2+x
设a、b、c为三个不同的实数,使得方程x2+ax+1=0和x2+bx+c=0有一个相同的实数根,并且使方程x2+x+a=
已知a,b,c为正整数,方程ax^2+bx+c=0的两实根为x1,x2(x1≠x2)且|x1|
已知实数a>b>c且a+b+c=0,方程ax^2+bx+c=0的两个不同的实数根为x1,x2 (1)证明-1/2c且a+
已知a>b>c.a+b+c= 0,方程ax^2+bx+c=0的两个实数根为x1、x2.
已知方程ax^2+bx+c(a≠0)有实根x1和x2,设p=x1^2010+x2^2010,q=x1^2009+x2^2
设a,b,c为正数,证明:方程ax2+bx+c=0和1/a x2+1/b x+1/c=0中,至多有一个方程有实根
已知非零向量a,b,c满足a⊥b,x1,x2是方程x*2+bx+c(x为实数)两根,求证x1=x2
已知方程ax^2+bx+c=0的两根为x1,x2,且|x1|<1,|x2|<1,则a+b+c的最小值
一元二次方程初一竞赛1.已知b、c是满足c>b>0的这整数,方程x2-bx+c=0有两个不等的实数根x1和x2,在P=1
方程x2+ax+2b=0和方程x2-2bx+a=0都有实根,则a+b的最小值是___
已知三个集合A=x|x2-3x=2=0,B=x|x2-ax+(a-1),C =x|x2-2x+b=0,问同时满足B是A的