作业帮 > 数学 > 作业

高一三角函数证明题1、 (sina)^2-(cosa)^2=(sina)^2-(cosa)^22、 (tana)^2(s

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 06:13:55
高一三角函数证明题
1、 (sina)^2-(cosa)^2=(sina)^2-(cosa)^2
2、 (tana)^2(sina)^2=(tana)^2-(sina)^2
3、 (1-2sinx*cosx)/((cosx)^2-(sinx)^2)=(1-tanx)/(1+tanx)
第一题打错了
(sina)^4-(cosa)^4=(sina)^2-(cosa)^2
真的急等
高一三角函数证明题1、 (sina)^2-(cosa)^2=(sina)^2-(cosa)^22、 (tana)^2(s
1,(sina)^4-(cosa)^4=((sina)^2-(cosa)^2)*((sina)^2+(cosa)^2)
=(sina)^2-(cosa)^2
2,(tana)^2(sina)^2=(sina)^4/(cosa)^2=(sina)^2*(1-(cosa)^2)/(cosa)^2
=(sina)^2/(cosa)^2-(sina)^2(cosa)^2/(cosa)^2
=(tana)^2--(sina)^2
3,(1-2sinx*cosx)/((cosx)^2-(sinx)^2)=((cosx)^2+(sinx)^2-2sinx*cosx)/ ((cosx)^2-(sinx)^2)
=(cosx-sinx)^2/((cosx-sinx)*(cosx+sinx))
=(cosx-sinx)/(cosx+sinx)
=(1-tanx)/(1+tanx)
这些题实在不行就把等式左右两边都化成sin和cos 约一约就出来了