f(x)在[0,+∞)内连续,且lim(x→+∞)f(x)=1.证明函数y=e^(-x)∫(0,x)e^tf(t)dt满
f(x)在[0,+∞)内连续,且lim(x→+∞)f(x)=1.证明函数y=e^(-x)∫(0,x)e^tf(t)dt满
设f(x)具有连续导数,且满足f(x)=x+∫(上x下0)tf'(x-t)dt求lim(x->-∞)f(x)
设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)d
设f(x)连续,且满足f(x)=e^x+∫(0,x)tf(x-t)dt,求f(x)
急,定积分相关问题!1.设f(x)在[0,+∞)内连续,且lim(x→∞)f(x)=1.证明函数y=[e^(-x)]∫(
设f(X)连续且满足 f(x)=e^x+sinx- ∫ x 0 (x-t)f(t)dt,并求该函数f(x)
设f(x)连续,且满足f(x)=e^x+∫x上0下(t-x)f(t)dt 求f(x)
一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(
证明:若函数f(x)在(-∞,+∞)上连续,且f(x)=∫(x,a)f(t)dt,则f(x)≡0.
证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
f(x)=e^x-x∫f(t)dt+∫tf(t)dt,(其中式子中积分为定积分,上限均为x,下线均为0),其f连续,求f
设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy/dx=?